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Abstract

In this paper, we provide a H,,—norm lower bound on the worst—case identification
error of least—squares estimation when using FIR model structures. This bound
increases as a logarithmic function of model complexity and is valid for a wide class
of inputs characterized as being quasi-stationary with covariance function falling
off sufficiently quickly.
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1 Introduction

The least—squares algorithm, due to Gauss, has been extensively studied and
used in system identification and under certain stochastic assumptions on the
disturbances it has been shown to enjoy various optimality properties [9,22].

Recently however, many researchers have considered using deterministic ‘worst—
case’ noise descriptions; see for example [21,14,16] for surveys of this area and
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lists of references. Since the least—squares method is in very widespread and
successful use, it is of interest to analyze its behavior under worst—case as-
sumptions and indeed some literature already exists on this topic [1-4,17-19].
The purpose of the current paper is to pursue this analysis further and to
analyze the dependence of the estimation error on the model complexity. To
simplify the exposition, we shall restrict our attention to finite-impulse re-
sponse models.

In a stochastic setting, and under suitable conditions on the unknown system,
noise, and input, an infinite-dimensional system can be recovered asymptoti-
cally as the size of data and model order grows [10,9]. A key condition required
for this property to hold is that the input signal must be persistently exciting
of infinite order.

In a deterministic worst-case setting, when the unknown system is finite-
dimensional, it is known that its least-squares estimate converges to the true
system as noise amplitude decreases to zero and the number of data tends to
infinity [1]. This property has been called robust convergence in the terminol-
ogy introduced in [7]. On the other hand, in [2] it is shown that if the input is
chosen to be a pseudo random binary sequence (PRBS), then the worst—case
identification error of the least—squares algorithm diverges as O(y/n) €, where
n is the model order and € is an upper bound on measurement corruptions.

Therefore, for a particular highly specialised input, the popular least-squares
algorithm is divergent in a worst-case setting. The main result of this paper
is to show that this same divergence occurs for a much broader class of inputs
than the specialised PRBS one, and hence this paper extends previous results
on this topic [2].

The worst case result presented here is with respect to the frequency domain
Hs supremum norm. However, in the context of worst-case identification it is
pertinent to observe that the time—domain ¢; and /y—norms have drawn more
attention than the H,—norm although the latter is no less important owing
to its use in robust control. This concentration on time domain formulation
is mostly due to the complexity of the ensuing analysis. More specifically,
it should be appreciated that particular difficulties arise when working with
the H,,—norm since this choice involves measuring the performance of the
identification algorithm in terms of a non—quadratic function (the H., norm)
while the free variables (noise and input sequence) are ¢, constrained.

As a result, and in contrast to the worst—case identification in H, using time-
domain data setting of this paper, the performance, sample complexity, and
input design issues of /; and ¢, worst—case identification are by now well under-
stood and a variety of results are available in the literature [4,5,8,11,13,15,17-
20].



2 Divergence Result

Consider the identification of a single-input/single-output, linear—time invari-
ant, discrete—time system represented by a finite impulse response model

y(t) =

n

k=1

> g(k)ult — k) +v(t) (1)

where u(t) is the input sequence and v(¢) is a bounded disturbance

lv(t)] < e < oo, Vi

(2)
The order of the system, n is assumed to be known and finite and the inputs
are assumed to be bounded as

lu(t)| < Cy < 0.

(3)
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where YL denotes transpose of Yy. Then assuming Uy has full column rank,
lated as

the least—squares estimates of impulse-response coefficients in (1) are calcu-

gn = (UNUN)"'Ux Y. (4)
Let gy & g — gy denote the error, which can be written as
where

gnv = (UNUN)"'UR VN

and let



denote the error transfer function. The H,,—norm of G ~ is defined by

IGwlloe £ max |Gy (e™)]
wi<r

which allows the further definition of the worst-case identification error as

2 sup [|G oo (5)
o(Dl<e
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The main result of this paper is the derivation of a lower bound on ey and
which applies for a much broader class of input signals than originally con-
sidered in [2] where the only other similar result appears. The nature of the
lower bound derived here is such as to tend to infinity with increasing n, so
that worst case divergence of the least-squares algorithm is implied.

To proceed, a key tool is Lemma 2 which depends on the following classical
result [6] used in Fourier analysis literature for estimating so-called Lebesgue
constants.

Fact 1 (Hardy’s inequality) Let cy be arbitrary complexr numbers. Then
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Lemma 2 Let ey be as in (5). Then

1N+
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where Sy = (ULUy)™!

PROOF. Let
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Interchanging the order of summation, Gy (e?) can be written as
N+n

Gy eﬂ“’:—z () Prs(e77). 9)

t n+1

Let R and Z denote respectively real and imaginary parts. Fix 6 and let

n(t) = e sign (R [Pya(e 7)]), Vi (10)



where sign(z) is the real valued function defined as sign(x) = z/|z| for z # 0
and sign(0) = 0. Then 7(¢) is admissible noise and we obtain from (9) and
(10)
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Letting now 7(t) = € sign (I [PN,t(e*ja)]) for all ¢, use of (9) provides
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Thus it follows from (11) and (12) that for each fixed 0
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Integrating (13) with respect to # and using Fact 1 for (8) allows (7) to be
obtained as follows
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From now on, it will be assumed that u(t) is quasi-stationary in the sense
of [9] or, equivalently, amenable to the ‘generalised harmonic analysis’ of
Wiener [23]. This implies that Ry = UL Uy converges to a symmetric Toeplitz
autocorrelation matrix

®w)= > R(r)e?™ (15)

assuming that R(7) decays sufficiently quickly for the infinite sum to exist.

It is well known that for finite dimensional systems [12] and under mild
stochastic assumptions on the disturbance that involve it being second order
stationary with covariance function decaying sufficiently quickly then ||Gy||ls —
0 w.p.1 as N — oo if the input is quasi—stationary and sufficiently rich. This
conclusion can be extended to strictly stable infinite-dimensional linear sys-
tems if the model order is allowed to monotonically increase to infinity at a
suitable rate relative to the growth in available data [10]. A common theme
of these results is the assumption that R in (14) is positive definite for all n,
which is equivalent to ®(w) > 0.

The autocorrelation matrix R in (14) is positive definite for all n provided
R(0) > >>2°, |R(7)|. To see this, let o1(Ry) > -+ > 0,(Ry) denote singular
values of Ry. Then the largest singular value of Ry can be bounded above as

() < max 3 |k, 0)| (16
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Now if Ry is split as Ry = Ry —I—EN, where Ry is the diagonal matrix defined
by Ry(k,k) = Rn(k,k) and Ry is perturbation matrix containing only off-
diagonal entries of Ry, then the smallest singular value of Ry may be bounded
below as

O'n(RN) Z O'n(RN) — Ul(ﬁz]v). (17)



Thus from (17) and (16), the following inequality is obtained

ax 3" [ (k. ) (18)

1<k<

on(Ry) > min Ry (k, k) — 55 2

which as N — oo converges by the quasi-stationarity assumption to

n

an(R) > R(0) = 3 |R(7)|-

T=1

Therefore the assumption R(0) > >2°, |R(7)| ensures o,(R) > 0 for all n.

In the derivation of the main result, the following stronger condition will in
fact be required

00 00 1/2
R(0)> 3" [R(7)| +C, (Z \R<T>|) . (19)
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This is satisfied by a large class of inputs including white-noise inputs and
the pseudo random binary sequences used in [2]. As well, a coloured input
generated according to

u(t) = s(t) + H(q)p(t) (20)

where s(t) and p(t) are zero mean, uncorrelated, white-noise sequences with
unit variance and H(q) is an exponentially stable transfer function such that
| H (e’“)|]a < 1 can be shown to satisfy (19).

However, it is acknowledged that a limitation of the main result in Theorem 3
is that the requirement (19) cannot be weakened. Nevertheless, Theorem 3
constitutes a significant advance over previous work where the conditions [2]
were (by assuming PRBS input) much stronger. As well, the fact that the
class of inputs may be broadened at all from the PRBS case considered in [2]
indicates a more fundamental nature of the worst case divergence than merely
being a pathology confined to a particular input.

Given this preliminary comments, the main result of the paper is as follows.

Theorem 3 Let u(t) be quasi-stationary deterministic signal satisfying (19)
and ey be as in (5). Then for some absolute constant C

liI%TninfeN > Clogn e. (21)

PROOF. First by the triangle inequality,
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A lower bound on the first term of the right hand side of (22) can be derived
from the following inequality

1 N+n N+n
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and an upper bound on the second term of the right hand side of (22) is
obtained as
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where the inequality in (24) holds by the Cauchy—Schwartz inequality and the
last equality by the fact that Ry is symmetric and Sy = Rjy'. Thus from (22),
(23), and (24)
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Now, split Ry as Ry = Ry + ﬁN as in the discussion preceding the the-
orem. Notice that Sy(k,k)Rn(k,k) — 1 equals the k’th diagonal entry of
—RIQIIA%N. Hence it is bounded in magnitude by al(R]}lRN) which is in turn
over-bounded by o7 '(Ry)o1(Ry). Since Ry converges to R it can be asserted
that for all &

lim sup [ Ry (k, k) S (k, k) — 1] < (R(O) s \R(T)|>_ f;l R(7)|, (26
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which implies
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Thus from (25)—(27), for all k
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Let v denote the right hand side of (28). Then from Lemma 2

"1

e = O(logn) e.

This completes the proof. O

Theorem 3 shows that when the inputs are bounded quasi-stationary subject
to the requirement (19), then the worst-case supremum norm frequency do-
main error ey diverges as model order is increased. It remains an open problem
whether the lower bound in (21) is attained for some input signal in the class
(19) or even in the largest class ®(w) > 0. Under the same input assumptions,
however it is easy to show that ey is bounded above by a term O(y/n) €.

3 Conclusion

The purpose of this paper was to illustrate that for a class of inputs that
are persistently exciting, the least squares algorithm is worst-case divergent
at a rate logarithmic in model order n and with respect to the H,, norm
error of transfer function estimation. This represents an extension of previous
results related to time domain norms to the H,, frequency domain norm,
and represents an extension of previous results derived for the H., norm to
a much wider class of input signals. Nevertheless, the main limitation of the
work is that a certain technical condition on the input needs to be imposed
that precludes the results applying to all inputs that are persistently exciting



of all orders. Work is in progress to use the techniques of this paper to remedy
the deficiency.
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