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Abstract

We show that a sufficient condition for the robust stability of constrained linear model predictive

control is for the plant to be open-loop stable, for zero to be a feasible solution of the associated

quadratic programme and for the input weighting be sufficiently high. The result can be applied

equally to state feedback and output feedback controllers with arbitrary prediction horizon. If integral

action is included a further condition on the steady state modelling error is required for stability. We

illustrate the results with two forms of integral action commonly used with model predictive control.

1 Introduction

Model predictive control (MPC) is a popular control strategy widely used in industry for plants with
constraints (Qin and Badgwell, 2003). We are concerned with demonstrating the robustness of linear
MPC to plant uncertainty with stable plants. Linear MPC has a linear state space model, linear equality
and inequality constraints and a quadratic cost function with weights on both predicted states and inputs.

It might seem intuitively obvious that with sufficiently high weighting on the control input such a con-
troller would be both nominally and robustly stable. However there are remarkably few results in the
literature concerning constrained linear MPC’s robustness to model uncertainty. Zheng (1999) provides
a sufficient condition for robust stability of state feedback MPC, while Zheng and Morari (1995) and
Findeisen et al. (2003) provide sufficient conditions for nominal stability of output feedback MPC. More
generally, the majority of the literature is devoted to the further augmentation of the MPC cost or con-
straints to guarantee stability: see (Mayne et al., 2000) for a survey of methodologies for guaranteeing
nominal state feedback stability and more recently (Kerrigan and Maciejowski, 2004), (Sakizlis et al.,
2004) and references therein for guaranteeing robustness. However we believe Zafiriou’s critique of such
approaches (Zafiriou, 1990) remains pertinent.

Heath et al. (2003) show that the multivariable circle criterion can be used to guarantee the closed-
loop stability of certain MPC schemes, provided the constraints allow zero as a feasible solution to the
associated constrained optimisation problem. This is always true (for example) if the only constraints
are simple bounds on the inputs. In this paper we use the result to provide a sufficient condition for the
robust stability of both state feedback and output feedback MPC. In particular, if there is no integral
action, it is sufficient that both plant and model are stable and the input weighting is sufficiently high.

∗Centre for Complex Dynamic Systems and Control (CDSC), University of Newcastle, NSW 2308, Australia. Tel: +61
2 4921 5997. Fax: +61 2 4960 1712. Email: wheath@ee.newcastle.edu.au

†School of Electrical Engineering and Computer Science, University of Newcastle, NSW 2308, Australia. Tel: +61 2
4921 5204. Fax: +61 2 4960 1712. Email: onyx@ecemail.newcastle.edu.au

1



φ
x(t) φ(x(t))

G(z)

Figure 1: Feedback around the nonlinearity.

We also consider two popular forms of integral action which we will label velocity form and two-stage form
respectively. The velocity form corresponds to the scheme of Prett and Garćıa (1988) where only input
and output changes are weighted in the cost function. The two-stage form corresponds to the scheme of
Muske and Rawlings (1993) where the input and state steady state values are computed via a separate
optimization at each control stage. For both forms we require an additional condition for stability that
the steady state behaviour of the plant and model are sufficiently close (in some sense).

Although the results are both conservative and limited to open-loop stable plants, we should note that
the model and plant are not assumed to match, no terminal constraints are introduced and the results
are independent of signal norms. Furthermore there is no requirement that the steady state should lie on
the interior (as opposed to the boundary) of the constraint set.

The paper is structured as follows. In Section 2 we quote two sufficient conditions for closed-loop asymp-
totic stability. Each is derived from the discrete multivariable circle criterion. In Section 3 we introduce
the MPC notation. Sections 4 to 6 contain the main contributions of the paper. In Section 4 we provide
a stability analysis of linear MPC without integral action. In Section 5 we consider velocity form integral
action while in Section 6 we consider two-stage form integral action. Proofs of the Lemmas may be found
in Appendix A while a simulation example is presented in Appendix B.

2 Preliminaries: strongly positive real results

The discrete version of the multivariable circle criterion (Haddad and Bernstein, 1994) states that if φ is
a continuous static map satisfying

φ(x)T (φ(x) + x) ≤ 0 (1)

and if I + G(z) is strongly positive real then the closed loop system x(t) = G(z)φ (x(t)) is stable (see
Fig 1).

Simple multiplier theory (Khalil, 2002; Heath et al., 2003) gives the following lemma as a corollary:

Lemma 1: Suppose φ is a continuous static map satisfying

φ(x)T Hφ(x) + φ(x)T x ≤ 0 (2)

If H is positive definite and H + G(z) is strongly positive real then the closed-loop system x(t) =
G(z)φ (x(t)) is stable. �

Heath et al. (2003) showed that certain quadratic programmes could be included in the class of such
functions. Hence the further lemma:

Lemma 2: Suppose we have the closed-loop equations

x(t) = G(z)φ(x(t))
φ(x(t)) = arg min

ν
νT Hν + 2νT x(t)

s. t. Aν � b(t) and Cν = 0

(3)

with H positive definite, G(z) strictly proper and stable and ν = 0 always feasible. Then a sufficient
condition for stability is that H + G(z) be strongly positive real. �
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3 MPC notation

3.1 MPC definition

Given a horizon N , let J(X,U) describe the cost function

J(X,U) = ||xN − xss||
2
P +

N−1
∑

k=1

||xk − xss||
2
Q +

N−1
∑

k=0

||uk − uss||
2
R (4)

Here X and U are sequences of predicted states and inputs

X = (x1, x2, . . . , xN ) with xk ∈ R
nx

U = (u0, u1, . . . , uN−1) with uk ∈ R
nu (5)

Where convenient we will consider X and U to be stacked vectors X ∈ R
Nnx and U ∈ R

Nnu without
change of notation. The terms xss and uss correspond to desired steady state values. The weighting
matrices P and Q are positive semi-definite while R is positive definite.

We will consider two choices for the terminal cost weighting matrix P . One possibility is simply to choose
P = Q. The other possibility, which we will term LQR tuning, is to choose P to satisfy the discrete
algebraic Riccati equation (DARE)

AT PA − P − AT PB(R + BT PB)−1BT PA + Q = 0 (6)

With LQR tuning, unconstrained MPC is equivalent to unconstrained LQR control with an infinite cost
horizon (Bitmead et al., 1990). Furthermore the corresponding state-feedback constrained MPC with
LQR tuning is nominally optimal for open-loop stable plants provided the horizon N is sufficiently large
and the set-point is away from boundaries (Muske and Rawlings, 1993; Chmielewski and Manousiouthakis,
1996). Consequently LQR tuning with fixed N has been proposed by Muske and Rawlings (1993) for
output feedback constrained MPC with integral action. Its successful industrial application has been
reported, including by the current authors (Wills and Heath, 2004).

Given a state evolution model xi+1 = Axi + Bui and state and input constraint sets X and U we may
define the MPC law to be:

MPC: Set u(t) to
u(t) = ĒU∗ (7)

where
Ē =

[

I 0 . . . 0
]

(8)

and
[X∗, U∗] = arg min

X,U
J(X,U)

s. t. xi+1 = Axi + Bui, xi+1 ∈ X and ui ∈ U

for i = 0, . . . , N − 1

(9)

We will consider the cases with and without integral action (or “offset free” action) separately. With
integral action we will only consider output feedback MPC.

• Without integral action, xss and uss are derived from external variables, and for stability analysis
may be considered zero without loss of generality. In this case state feedback MPC defines a law

u(t) = κ(x(t)) for some κ (10)

with x0 = x(t) where x(t) is the plant state (see e.g. Mayne et al., 2000). Similarly output feedback
MPC defines a law

u(t) = κ(x̂(t)) (11)

with x0 = x̂(t) where x̂(t) is some observed state value.
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• For velocity form integral action an augmented model is used so that ∆u(t) = u(t) − u(t − 1) is
computed as a function of an augmented state [ŵ(t)T y(t)T ]T where w(t) = ∆x(t). We will find it
useful to think of output feedback MPC as defining a law

u(t) = κ(ŵ(t), y(t), u(t − 1)) for some κ (12)

• For two-stage form integral action xss and uss depend on some disturbance term d0. In this case
output feedback MPC defines a law

u(t) = κ(x̂(t), d̂(t)) for some κ (13)

with x0 = x̂(t) as before and d0 = d̂(t) for some disturbance estimate d̂(t).

3.2 MPC in implicit form

It is standard to express MPC in implicit form by projecting onto the equality constraints defined by the
model. Introduce the matrices

P̄ =











Q

. . .

Q

P











(with P̄ = P when N = 1)

R̄ =







R

. . .

R







Φ =











B

AB B
...

...
. . .

AN−1B AN−2B · · · B











Λ =







A
...

AN






(14)

Also define

H̄ = R̄ + ΦT P̄Φ

L̄ = ΦT P̄Λ (15)

and

Ix =
[

I · · · I
]T

with Ix ∈ R
nx,Nnx

Iu =
[

I · · · I
]T

with Ix ∈ R
nx,Nnx (16)

Define the implicit cost

JI(U) = UT H̄U + 2UT
(

L̄x0 − ΦT P̄ Ixxss − R̄Iuuss

)

(17)

We can then replace (9) in the MPC law by expressing U ∗ as

U∗ = arg min
U

JI(U)

s. t. U ∈ Ū
(18)

where Ū is the natural generalisation of X and U to U .
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Figure 2: State feedback MPC.

4 Stability of MPC without integral action

4.1 State feedback

Consider the plant
x(t) = Gx(z)u(t) (19)

with Gx(z) stable and strictly proper. We will model the plant with some

Ĝx(z) = (zI − A)−1B (20)

Note that we do not necessarily assume the plant Gx(z) and model Ĝx(z) to be equal.

We wish to establish the stability of the state feedback system comprising Gx(z) with the MPC control
law u(t) = κ(x(t)). As stated above we assume xss and uss to be zero without loss of generality. We
further assume the constraints U ∈ Ū can be written as a set of (possibly time varying) linear inequalities
and equalities

AUU � bU and CUU = 0 (21)

with U = 0 always feasible. Since the control law comprises a quadratic programme and linear multipli-
cation (see Fig 2) we may apply Lemma 2 to prove stability. Specifically we may say:

Result 1. Consider the closed-loop feedback system comprising the plant x(t) = Gx(z)u(t) and MPC
controller u(t) = κ(x(t)) with horizon N and with P chosen either as P = Q or as the solution of
the DARE (6). If Gx(z) is strictly proper and stable, if A has all eigenvalues in the unit circle, if the
constraints on U can be written in the form (21) with U = 0 feasible and if R is sufficiently large then
the system is stable.

Proof: From Lemma 2 and the implicit form of MPC, it is sufficient that

T (z) = H̄ + L̄Gx(z)Ē (22)

be strongly positive real. Suppose we put R = ρR0 for some positive definite R0 and ρ > 0. If P is chosen
as the solution of the DARE (6) then for A stable P∞ = limρ→∞ P exists (Kwakernaak and Sivan, 1972)
and is the solution to the discrete Lyapunov equation

AT P∞A − P∞ + Q = 0 (23)

Hence, for either choice of P ,

lim
ρ→∞

1

ρ
T (z) = R̄0 for |z| = 1 and z = 0. (24)

where

R̄0 =







R0

. . .

R0






(25)
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Thus for sufficiently large ρ, T (z) is strongly positive real and the closed-loop system is stable. �

Result 1 is useful when the horizon N is small. But for large N it becomes somewhat unsatisfactory on
two counts. Firstly the dimension of T (z) increases with horizon N , and secondly we would like to find a
ρ such that the closed-loop is guaranteed stable for any N . Following (Heath et al., 2003) it is sufficient
to examine the eigenvalues of

M(z) =

[

Ē

Gx(z)H L̄T

]

H̄−1
[

L̄Gx(z) ĒT
]

(26)

We find M(z) ∈ C
2nu,2nu with dimension independent of horizon N .

In what follows we will consider only LQR tuning, where P is chosen as the solution of the DARE (6).
Let e[X] denote the non-zero eigenvalues of matrix X. We have the following two lemmas:

Lemma 3: We have the identity

e [M(z)] = e
[

H̄−
1

2 (L̄Gx(z)Ē + ĒT Gx(z)H L̄T )H̄−
1

2

]

(27)

Furthermore with LQR tuning we may express M(z) as

M(z) =

[

KGx(z) H−1

Gx(z)H
(

∑N

i=1(A
T )iPBH−1BT PAi

)

Gx(z) Gx(z)HKT

]

(28)

where
H = P + BT RB (29)

and K is the LQR gain
K = H−1BT PA (30)

Proof: See Appendix A. �

Lemma 4: For R sufficiently large and for all values of z on the unit circle,

2 + min eig [M(z)] > 0 for all N (31)

Proof: See Appendix A. �

So me may say:

Result 2: Consider the closed-loop feedback system comprising the plant x(t) = Gx(z)u(t) and MPC
controller u(t) = κ(x(t)) with LQR tuning. If Gx(z) is strictly proper and stable, if A has all eigenvalues
in the unit circle, if the constraints on U can be written in the form (21) with U = 0 feasible and if R is
sufficiently large then the system is stable for any horizon.

Proof: We require that T (z) be strongly positive real. Given that Gx(z) is both stable and strictly
proper, it is sufficient to show for all values of z on the unit circle that

min eig
[

2H̄ + L̄Gx(z)Ē + ĒT Gx(z)H L̄T
]

> 0 (32)

Equivalently it is sufficient that for all values of z on the unit circle

2 + min eig
[

H̄−
1

2 (L̄Gx(z)Ē + ĒT Gx(z)H L̄T )H̄−
1

2

]

> 0 (33)

Hence Lemmas 3 and 4 give the result. �
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Figure 3: Output feedback MPC with an observer.

4.2 Output feedback

A similar result for output feedback MPC follows immediately. Specifically, suppose the plant is given
by

y(t) = Gy(z)u(t) (34)

and have an observer for the state

x̂(t) = Ju(z)u(t) + Jy(z)y(t) (35)

for some strictly proper stable transfer function matrix Ju(z) and some stable transfer function matrix
Jy(z). Then we can combine the observer with the MPC law u(t) = κ(x̂(t)); see Fig 3. We may say:

Result 3: Consider the closed-loop feedback system comprising the plant y(t) = Gy(z)u(t), the observer
x̂(t) = Ju(z)u(t) + Jy(z)y(t) and MPC controller u(t) = κ(x̂(t)) with either P = Q or LQR tuning. If
Gy(z) is strictly proper and stable, if A has all eigenvalues in the unit circle, if Ju(z) and Jy(z) are stable
(with Ju(z) strictly proper), if the constraints on U can be written in the form (21) with U = 0 feasible
and if R is sufficiently large then for given horizon N the system is stable. If furthermore we have LQR
tuning and if R is sufficiently large then the system is stable for any horizon.

Proof: The is exactly the same form as the previous case if we write

Gx(z) = Ju(z) + Jy(z)Gy(z) (36)

Since there is no requirement for the plant Gx(z) to match the model (Iz − A)−1B, the result follows
immediately from Results 1 and 2. �

5 Velocity form integral action for output feedback MPC

In the previous section we gave a sufficient condition for closed-loop stability when the controller does
not incorporate integral action. However most practical applications of MPC require (when feasible) the
rejection of constant disturbances. In this section we consider one well-known scheme for achieving this
(Prett and Garćıa, 1988; Maciejowski, 2002), which we term velocity form integral action. It is similar
in spirit to the integral action used in GPC (Clarke et al., 1987).

5.1 Control structure

Suppose we have a cost function of the form

J =

N
∑

i=1

||yi − r||
2
Q +

N−1
∑

i=0

||∆ui||
2
R (37)
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where ∆ui = ui−ui−1. Integral action can then be incorporated by including a disturbance in the model.
For example we can express an output disturbance model

xi+1 = Axi + Bui

yi = Cxi + d (38)

as
[

wi+1

yi+1

]

= Aa

[

wi

yi

]

+ Ba∆ui

yi = Ca

[

wi

yi

]

(39)

with

wi = ∆xi

Aa =

[

A 0
CA I

]

Ba =

[

B

CB

]

Ca =
[

0 I
]

(40)

The cost can then be expressed as

J =

∣

∣

∣

∣

∣

∣

∣

∣

[

wN

yN − r

]
∣

∣

∣

∣

∣

∣

∣

∣

2

P

+

N−1
∑

i=1

∣

∣

∣

∣

∣

∣

∣

∣

[

wi

yi − r

]
∣

∣

∣

∣

∣

∣

∣

∣

2

Qa

+

N−1
∑

i=0

||∆ui||
2
R (41)

with
P = Qa = CT

a QCa (42)

We might choose to modify the controller by adopting LQR tuning. In this case we would let P in (41)
satisfy the DARE

AT
a PAa − P − AT

a PBa(R + BT
a PBa)−1BT

a PAa + Qa = 0 (43)

Note that in this case the control cost no longer has the structure of (37). In both cases for the output
feedback case we set w0 equal to some observer ŵ(t), y0 = y(t) and ∆u0 = u(t) − u(t − 1) so that MPC
is a feedback law

u(t) = κ (ŵ(t), y(t), u(t − 1)) for some κ (44)

See Fig 4. We will find it useful to define the sequence

Ua = (u0,∆u1, . . . ,∆uN−1) (45)

The implicit cost is

JIV (Ua) = [Ua − ĒT u−1]
T H̄a[Ua − ĒT u−1] + 2[Ua − ĒT u−1]

T
(

L̄aw0 − ΦT
a P̄aIxwss

)

(46)

The implicit velocity form MPC law can be expressed as

Velocity form MPC: Set u(t) to
u(t) = ĒU∗

a (47)

where
U∗

a = arg min
Ua

JIV (Ua)

s. t. Ua ∈ Ūa

(48)

with w0 = ŵ(t) and u−1 = u(t − 1).

We will assume the observer is given by

ŵ(t) = Ju(z)(1 − z−1)u(t) + Jy(z)(1 − z−1)y(t) (49)

for some stable Ju(z) and Jy(z).
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Figure 4: Output feedback MPC with velocity form integral action.

5.2 Stability analysis

It follows from Lemma 2 that the closed-loop system is stable if and only if

Ta(z) = H̄a − H̄aĒT z−1Ē + L̄a

[

Ju(z)(1 − z−1) + Jy(z)(1 − z−1)Gy(z)
Gy(z)

]

Ē (50)

is strongly positive real.

Lemma 5: Let T1,1 + TT
1,1 be positive definite with

T1,1 = BT

N−2
∑

i=0

(N − 1 − i)(AT )iCT QGy(1) + BT
a (AT

a )N−1Pa

[

0
Gy(1)

]

(51)

Then if R is chosen sufficiently large, Ta(z) is strongly positive real.

Proof: See Appendix A. �

The following result follows immediately:

Result 4: Consider the closed-loop feedback system comprising the plant y(t) = Gy(z)u(t), the ob-
server ŵ(t) = Ju(z)∆u(t) + Jy(z)∆y(t) and MPC controller with velocity form integral action u(t) =
κ(ŵ(t), y(t), u(t − 1)) with horizon N and either P = Q or LQR tuning. If Gy(z) is strictly proper and
stable, if A has all eigenvalues in the unit circle, if Ju(z) and Jy(z) are stable (with Ju(z) strictly proper),
if the constraints on Ua can be written in the form (21) with Ua = 0 feasible, if R is sufficiently large and
if T1,1 + TT

1,1 is positive definite then the system is stable in closed-loop. �

Note that if P = Qa then

T1,1 = BT

N−1
∑

i=0

(N − i)(AT )iCT QGy(1) (52)

5.3 Computation

As before, rather than examine Ta(z), it is sufficient to check that 2 + min eig[Ma(z)] > 0 with

Ma(z) =

[

Ē

M1(z)H

]

H̄−1
a

[

M1(z) ĒT
]

(53)

where

M1(z) = L̄a

[

Ju(z)(1 − z−1) + Jy(z)(1 − z−1)Gy(z)
Gy(z)

]

− H̄aĒT z−1 (54)

Once again, Ma(z) ∈ R
2nu,2nu has dimension independent of horizon length N .
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5.4 Note on steady state conditions

Suppose the closed-loop system reaches steady state with input and output values uss and yss, and
furthermore the plant is such that yss may be expressed as some continuous function yss = yss(uss).
Then uss satisfies

uss = arg min
u

||yss(u) − r||
2
[CaPCT

a
+(N−1)Q]

s. t. u ∈ U,

(I − A)−1Bu ∈ X

(55)

In this sense, it is more straightforward to put P = CT
a QCa so that uss satisfies

uss = arg min
u

||yss(u) − r||
2
Q

s. t. u ∈ U,

(I − A)−1Bu ∈ X

(56)

For both cases the stability result confirms that such a steady state is achieved.

6 Two stage form integral action for output feedback MPC

Muske and Rawlings (1993) recommend an alternate form of integration. Specifically they recommend
a two-stage MPC for both regulator and servo problems (see also Pannocchia and Rawlings, 2003, for a
recent discussion).

6.1 Controller structure

We will consider output feedback MPC for the plant

y(t) = Gy(z)u(t) (57)

For integral action we let xss and uss be dependent on some disturbance estimate d̂ = d̂(t) so that the

MPC law may be expressed as u(t) = κ(x̂(t), d̂(t)) for some κ. Specifically, given an output disturbance
model (the idea can be straightforwardly generalised to an input disturbance)

xi+1 = Axi + Bui

yi = Cxi + di (58)

we put

uss = arg min
u

∣

∣

∣

∣

∣

∣
C(I − A)−1Bu + d̂ − r

∣

∣

∣

∣

∣

∣

2

Qss

s. t. u ∈ U and (I − A)−1Bu ∈ X

xss = (I − A)−1Buss

(59)

Here r is the external set-point. We assume the weighting matrix Qss to be positive definite.

Given plant input u(t) and output y(t) the state and disturbance estimates are given by

x̂(t) = Ju(z)u(t) + Jy(z)
(

y(t) − d̂(t)
)

d̂(t) = Jd(z) (y(t) − Cx̂(t)) (60)

with Ju(z) stable and strictly proper, Jy(z) stable and Jd(z) stable with Jd(1) = I. See Fig 5.
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Figure 5: Output feedback MPC with two-stage form integral action.

6.2 Sector bound result

We now have two quadratic programmes in the closed-loop system, so can no longer apply Lemma 2 for
stability analysis. Instead we will show that the mapping from a linear combination of x̂(t) and d̂(t) to a
linear combination of U∗ and uss takes the form of φ in Lemma 1. We will assume the conditions U ∈ Ū,
u ∈ U and (I −A)−1Bu ∈ X can be written as the (possibly time varying) linear inequality and equality
constraints (21) with U = 0 feasible (and hence u = 0 also feasible). We will also define

F̄ = −
1

2

(

ΦT P̄ Ix(I − A)−1B + R̄Iu

)

Fss = BT (I − A)−T CT Qss

Hss = BT (I − A)−T CT QssC(I − A)−1B

¯̄H =

[

H̄ F̄

F̄T µHss

]

(61)

Then we may say:

Lemma 6: Let φ define the map

[

U∗

uss

]

= φ

([

L̄x0

µFss(d̂ − r)

])

(62)

For any µ > 0 we find φ(.) is a continuous function satisfying

φ(x)T ¯̄Hφ(x) + φ(x)T x ≤ 0 (63)

Also ¯̄H is positive definite provided µ > 0 is chosen sufficiently big.

Proof: See Appendix A. �

6.3 Stability analysis

If we put U∗ = U∗(t) and uss = uss(t) we have the dynamic relationship

[

x̂(t)

d̂(t)

]

=

[

I Jy(z)
Jd(z)C I

]

−1 [
Gx(z)

Jd(z)Gy(z)

]

[

Ē 0
]

[

U∗(t)
uss(t)

]

(64)

where, as before
Gx(z) = Ju(z) + Jy(z)Gy(z) (65)

11



It follows from Lemmas 1 and 5 that the system is closed-loop stable provided Tµ(z) is strongly positive
real with

Tµ(z) =

[

H̄ F̄

F̄T µHss

]

+

[

L̄ 0
0 µFss

] [

I Jy(z)
Jd(z)C I

]

−1 [
Gx(z)

Jd(z)Gy(z)

]

[

Ē 0
]

(66)

Define the model and model error as

Ĝy(z) = C(zI − A)−1B

∆Gy(z) = Gy(z) − Ĝy(z) (67)

Furthermore put
Ĝx(z) = Ju(z) + Jy(z)Ĝy(z) (68)

We will assume Ju(z) and Jy(z) take the form

Ju(z) = (zI − A + LC)−1B

Jy(z) = (zI − A + LC)−1L (69)

so that (68) is consistent with (20).

Then we may express Tµ(z) as:

Lemma 7:

Tµ(z) =

[

H̄ + L̄Ĝx(z)Ē F̄

F̄T µHss

]

+

[

L̄Jy(z) [I − Jd(z)CJy(z)]
−1

[I − Jd(z)] ∆Gy(z)Ē 0

µFss [I − Jd(z)CJy(z)]
−1

Jd(z) [I − CJy(z)] ∆Gy(z)Ē 0

]

(70)

Proof: See Appendix A. �

The following results for special cases follow immediately:

• When Jd(z) = 0, we have the relation

Tµ(z) =

[

H̄ + L̄Gx(z)Ē F̄

F̄T µHss

]

(71)

Thus Tµ(z) is strongly positive real when Jd(z) = 0 and µ is sufficiently big.

• If we put Jd(z) = I we have

Tµ(z) =

[

H̄ + L̄Ĝx(z)Ē F̄

F̄T µHss

]

+

[

0 0
µFss∆Gy(z)Ē 0

]

(72)

Thus Tµ(z) is positive definite provided the model is sufficiently close to the plant and provided µ

is sufficiently large. Note that we always have, at steady state, Jd(1) = I.

Thus, if there is sufficiently small uncertainty at low frequency, stability can be guaranteed by ensuring
R is sufficiently large and Jd(z) has sufficiently low bandwidth. To be specific:

Result 5: Consider the feedback system comprising the plant y(t) = Gy(z)u(t), the state and disturbance

observers (60) satisfying (69) and MPC controller with two stage form integral action u(t) = κ(x̂(t), d̂(t))
with horizon N . The weighting matrix P is chosen either as P = Q or via LQR tuning. If Gy(z) is
strictly proper and stable, if A has all eigenvalues in the unit circle, if Ju(z) and Jy(z) are stable (with
Ju(z) strictly proper), if the constraints on U can be written in the form (21) with U = 0 feasible, if
R is sufficiently large, if Jd(z) has sufficiently low bandwidth, and if a µ can be found such that both
Tµ(1) + Tµ(1)T is positive definite and Tµ(z) evaluated with Jd(z) = 0 is strongly positive real then the
system is stable in closed-loop. �

We also have the following useful special cases:

12



• If R = ρR0 as before, then we have the relation

lim
ρ→∞

1

ρ
Tµ(z) =

[

R̄0 − 1
2 R̄0Iu

− 1
2IT

u R̄T
0 lim

ρ→∞

µ
ρ
Hss

]

+

[

0 0

lim
ρ→∞

µ
ρ
Fss [I − Jd(z)CJy(z)]

−1
Jd(z)[I − CJy(z)]∆Gy(z)Ē 0

]

(73)

• If we put the observer gain L = 0 then

Tµ(z) =

[

H̄ + L̄Gx(z)Ē F̄

F̄T + µFssJd(z)∆Gy(z)Ē µHss

]

(74)

• One possibility (see Maciejowski, 2002, p59) is to choose L = 0 and Jd(z) = I. This yields

Tµ(z) =

[

H̄ + L̄Gx(z)Ē F̄

F̄T + µFss∆Gy(z)Ē µHss

]

(75)

6.4 Computation

If we put

W1(z) = Ĝx(z) + Jy(z) [I − Jd(z)CJy(z)]
−1

[I − Jd(z)] ∆Gy(z)

W2(z) = [I − Jd(z)CJy(z)]
−1

Jd(z) [I − CJy(z)] ∆Gy(z) (76)

then we may write

Tµ(z) =

[

H̄ F̄

F̄T µHss

]

+

[

L̄W1(z)
µFssW2(z)

]

[

Ē 0
]

(77)

In a similar manner to before, it is sufficient to check 2 + min eig[(Mts(z)] > 0 with

Mts(z) =

[

Ē 0
W1(z)H L̄T µW2(z)HFss

] [

H̄ F̄

F̄T µHss

]

−1 [
L̄W1(z) ĒT

µFssW2(z) 0

]

(78)

7 Conclusion

We have demonstrated the closed-loop asymptotic stability of constrained linear MPC for stable plants.
Without integral action we simply require the input weighting to be sufficiently high. With integral
action a further condition on the accuracy of the steady state model is required. We have illustrated
such a requirement for both velocity form and two-stage form integral action. The results are equally
applicable to state feedback and output feedback MPC schemes.
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Appendix A: Proof of the Lemmas

Proof of Lemma 3: We will exploit the relation, for arbitrary matrices A and B,

e
(

AB + (AB)H
)

= e

(

[

A BH
]

[

B

AH

])

= e

([

B

AH

]

[

A BH
]

)

(79)

Hence

e
(

H̄−
1

2 (L̄Gx(z)Ē + ĒT Gx(z)H L̄T )H̄−
1

2

)

= e

([

Ē

Gx(z)H L̄T

]

H̄−1
[

L̄Gx(z) ĒT
]

)

= e

([

ĒH̄−1L̄Gx(z) ĒH̄−1ĒT

Gx(z)H L̄T H̄−1L̄Gx(z) Gx(z)H L̄T H̄−1ĒT

])

Substituting for Q via the DARE (6) we can write

H̄ = S̄T















H

H

. . .

H

H















S̄ (80)

with

S̄ =

















I

KB I
...

. . .
. . .

KAN−3B
. . . I

KAN−2B · · · KB I

















(81)

and

L̄ =











BT PA +
∑N−1

k=1 BT (AT )kPBKAk

BT PA2 +
∑N−2

k=1 BT (AT )kPBKAk+1

...
BT PAN











(82)

Hence
S̄−T ĒT = ĒT (83)

and

S̄−T L̄ =











BT PA

BT PA2

...
BT PAN











(84)

Thus we have the identities

ĒH̄−1L̄ = K

ĒH̄−1ĒT = H−1

L̄T H̄−1L̄ =

N
∑

i=1

(AT )iPBH−1BT PAi

= Q − P + ΛT P̄Λ (85)
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Note that the first of these is well-known, and usually shown via a dynamic programming argument
(Bitmead et al., 1990). Hence the result. �

Proof of Lemma 4: We find

M(z) = M1(z) +

[

0 0

Gx(z)H
∑N

i=2(A
T )iPBH−1BT PAiGx(z) 0

]

(86)

From Lemma 3
e [M1(z)] = e

(

H−
1

2

(

BT PAGx(z) + Gx(z)HAT PB
)

H−
1

2

)

(87)

So if we let R = R(ρ) as before we find

lim
ρ→∞

min e (M1(z)) = 0 (88)

But

min e (M(z)) > min e (M1(z)) − max

∣

∣

∣

∣

∣

e

(

Gx(z)H

N
∑

i=2

(AT )iPBH−1BT PAiGx(z)

)∣

∣

∣

∣

∣

(89)

Suppose

Π =

N
∑

i=2

(AT )iPBH−1BT PAi =

N
∑

i=1

(AT )iKT HKAi (90)

Then for fixed ρ, ΠN is bounded. Specifically (Anderson and Moore, 1979) Π∞ = limN→∞ ΠN exists
and is the solution to the Lyapunov equation

Π∞ − AT Π∞A = AT KT HKA (91)

Thus for ρ sufficiently large, 2 + min e(M) > 0 for all N . �

Proof of Lemma 5:

It will be useful to consider three cases separately: (i) where z = 1, (ii) |z| = 1, z 6= 1 and (iii) z = 0.
In each case we need to show Ta(z) + Ta(z)H is positive definite for sufficiently large R. Equivalently,
we will put Q = εQ0 for some positive definite Q0, and allow ε > 0 to be sufficiently small. Note that
whether P is chosen as P = Qa or via LQR tuning, limε→0 P = 0.

(i) Let z = 1. We have

Ta(1) = H̄a − H̄aĒT Ē + L̄a

[

0
Gy(1)

]

Ē (92)

Thus with N = 1 we find

Ta(1) = BT
a PaAa

[

0
Gy(1)

]

=

[

B

CB

]T

Pa

[

0
Gy(1)

]

= T1,1 (93)

For N > 1, we can partition

Ta(1) =

[

T1,1 T1,2

T2,1 T2,2

]

(94)

with T1,1 ∈ R
nu×nu given by

T1,1 = BT
a

N−1
∑

i=1

(AT
a )i−1

[

0 0
0 Q

]

Ai
a

[

0
Gy(1)

]

+ BT
a (AT

a )N−1PaAN
a

[

0
Gy(1)

]

= BT

N−2
∑

i=0

(N − 1 − i)(AT )iCT QGy(1) + BT
a (AT

a )N−1Pa

[

0
Gy(1)

]

(95)

Taking Schur complements, for Ta(1) + Ta(1)T to be positive definite we require
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(a) T1,1 + TT
1,1 > 0

(b) T2,2 + TT
2,2 − (T2,1 + TT

1,2)(T1,1 + TT
1,1)

−1(T1,2 + TT
2,1) > 0

Furthermore

lim
ε→0

[

T2,2 + TT
2,2 − (T2,1 + TT

1,2)(T1,1 + TT
1,1)

−1(T1,2 + TT
2,1) > 0

]

= 2







R

. . .

R






(96)

Hence for ε > 0 sufficiently small Ta(1) + Ta(1)T is positive definite.

1. Suppose |z| = 1 with z 6= 0. Then

lim
ε→0

Ta(z) =











R(1 − z−1)
R

. . .

R











(97)

and hence limε→0(Ta(z) + Ta(z)H) is positive definite.

2. Finally with z = 0 we find
lim
ε→0

Ta(0) = R̄ (98)

�

Proof of Lemma 6: Continuity follows since each quadratic programme is continuous (Fiacco, 1983).
The KKT conditions for U∗ and uss can be written

H̄U∗ + CUζU + AT
UλU + L̄x0 + 2F̄ uss = 0 (99)

with

CUU∗ = 0

AUU∗ + sU = bU

sT
UλU = 0

sU � 0

λU � 0 (100)

and
Hssuss + Cuζu + AT

u λu + Fss(d̂ − r) = 0 (101)

with

Cuuss = 0

Auuss + su = bu

sT
u λu = 0

su � 0

λu � 0

(102)

Pre-multiplying (99) by U∗T , (101) by uss
T and substitution yields

U∗T
H̄U∗ + bUλU + U∗T

L̄x0 + 2U∗T
F̄ uss = 0 (103)

and
uss

T Hssuss + bT
u λu + uss

T Fss(d̂ − r) = 0 (104)
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Adding the two equations together (with an arbitrary scaling constant µ to the second) yields

[

U∗

uss

]T [
H̄ F̄

F̄T µHss

] [

U∗

uss

]

+

[

U∗

uss

]T [
L̄x0

µFss(d̂ − r)

]

= −bT
UλU − µbT

u λu

≤ 0 (105)

for all µ > 0.

Taking Schur complements, the matrix ¯̄H is positive definite if and only if both H̄ and µHss − F̄T H̄−1F̄

are positive definite. This latter condition is guaranteed for sufficiently large µ > 0. �

Proof of Lemma 7: We may write

[

I Jy(z)
Jd(z)C I

]

−1

=

[

I −Jy(z)
0 I

] [

I 0

0 [I − Jd(z)CJy(z)]
−1

] [

I 0
−Jd(z)C I

]

(106)

and

Gx(z) = Ju(z) + Jy(z)Gy(z)

= Ju(z) + Jy(z)Ĝy(z) + Jy(z)∆Gy(z)

= Ĝx(z) + Jy(z)∆Gy(z) (107)

Hence

[

I Jy(z)
Jd(z)C I

]

−1 [
Gx(z)

Jd(z)Gy(z)

]

=

[

I −Jy(z)
0 I

] [

I 0

0 [I − Jd(z)CJy(z)]
−1

] [

Gx(z)
Jd(z) [Gy(z) − CGx(z)]

]

=

[

I −Jy(z)
0 I

] [

I 0

0 [I − Jd(z)CJy(z)]
−1

] [

Ĝx(z) + Jy(z)∆Gy(z)
Jd(z) [I − CJy(z)] ∆Gy(z)

]

=

[

Ĝx(z)
0

]

+

[

Jy(z)∆Gy(z) − Jy(z) [I − Jd(z)CJy(z)]
−1

Jd(z) [I − CJy(z)] ∆Gy(z)

[I − Jd(z)CJy(z)]
−1

Jd(z) [I − CJy(z)] ∆Gy(z)

]

=

[

Ĝx(z)
0

]

+

[

Jy(z) [I − Jd(z)CJy(z)]
−1

[I − Jd(z)] ∆Gy(z)

[I − Jd(z)CJy(z)]
−1

Jd(z) [I − CJy(z)] ∆Gy(z)

]

(108)

The result then follows. �

Appendix B: Simulation example

To illustrate these results, consider the two-input two-output discrete plant given by transfer function
matrix

Gy(z) =











2.8z − 2.2

z3 − 2.2z2 + 1.79z − 0.57

−0.9z + 0.78

z3 − 1.1z2 + 0.81z − 0.522

z2 − 0.5z − 0.34

z3 − 1.7z2 + 1.26z − 0.432

−z + 1.55

z3 − 1.4z2 + 0.59z − 0.093











(109)

The plant Gy(z) is stable with two non-minimum phase transmission zeros. We model it with the reduced
order plant model

Ĝy(z) =











2.527

z − 0.9029

−0.4555

z − 0.3139

1.236

z − 0.5404

0.3467

z − 0.9469











(110)
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Figure 6: Frequency responses of plant Gy(z) (solid lines) and model Ĝy(z) (dashed lines).

The model Ĝy(z) is also stable, but has no non-minimum phase transmission zeros. The frequency
responses of both plant and model are shown in Figure 6.

In what follows we make no attempt to find a “good” design. We simply show that it is possible to find
tuning parameters such that the various stability criteria are satisfied.

7.1 No integral action

The model Ĝy(z) can be represented in state-space as

y(t) = C(zI − A)−1Bu(t) (111)

with

A =









0.9029 0 0 0
0 0.3139 0 0
0 0 0.5404 0
0 0 0 0.9469









B =









−1.5896 0
0 0.6749

−1.1117 0
0 0.5888









C =

[

−1.5896 −0.6749 0 0
0 0 −1.1117 0.5888

]

(112)

An observer was chosen with gain

L =









−0.4034 −0.2152
−0.0395 0.0744
−0.1595 −0.0935
−0.1755 0.3699









(113)

Figure 7 illustrates the eigenvalues of T (z) with a horizon N = 1 with Q the identity matrix and R set
to R = ρI with ρ = 8. With an infinite horizon such a choice of ρ fails the criterion. Figure 8 shows the
eigenvalues of M(z) (with 2 added) with ρ increased to 64. Figure 9 shows the values of the minimum
eigenvalues of M(z) (offset by 2) as ρ increases with N → ∞. Note that they are below zero for small
ρ. By contrast Figure 10 shows the values of the minimum eigenvalues of M(z) (with 2 added) as N

increases with ρ = 64. Note that they are above zero.
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Figure 7: Eigenvalues of T (z) with horizon N = 1 and weighting ρ = 8. Values using the model Ĝy(z) are
also shown (dashed)
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Figure 8: Eigenvalues of M(z) (offset by 2: i.e. eig[M(z)]+ 2 is shown) with horizon N → ∞ and weighting
ρ = 64. Values using the model Ĝy(z) are also shown (dashed)

7.2 Velocity form integral action

To illustrate the velocity form integration, we will set P = Qa, with Q = εI and R = I. The same
observer gain was used as in the previous case (note the observer estimates w(t) in this case). We then
have a condition on the steady state response of the plant and model (52). The eigenvalues of T1,1 for
various values of N are illustrated in Fig 11). We arbitrarily chose a horizon of N . Figure 12 illustrates
the eigenvalues of Ma(z) (offset by 2) for this example (same controller as before, but in velocity form)
with ε = 10−4. The constrained controller is thus guaranteed stable with these (rather cautious) tuning
parameters. Figures 13) and 14) illustrate the output and input time responses respectively. Both
set point changes and disturbances were added to the system. The constraints were that the first input
should lie between ±0.04 while the second input should lie between ±0.15. Note that the latter constraint
prevents offset-free performance on occasion. The corresponding unconstrained responses are also shown.
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Figure 9: Minimum eigenvalues of M(z) (offset by 2) with horizon N → ∞ for different values of ρ. Values
using the model Ĝy(z) are also shown (’o’s)
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Figure 10: Minimum eigenvalues of M(z) (offset by 2) with ρ = 64 and horizon N varying. Values using the
model Ĝy(z) are also shown (’o’s)

7.3 Two-stage form integral action

To illustrate the two-stage form integral action, we will set Qss = I, Q = I and R = ρI. The same state
observer gain was used once again. Figure 15) illustrates the eigenvalues of Mts(z) (with two added) with
N = 10, µ = 32, ρ = 155 and Jd(z) given by

Jd(z) =
0.1z

z − 0.9
I (114)

Figures 16) and 17) illustrate the output and input time responses respectively. The simulation was
run with the same set point changes, disturbances and constraints as the simulation with velocity form
integration. The corresponding unconstrained responses are also shown.
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Figure 11: Eigenvalues of T1,1. In this example they are positive for all N between 1 and 100.
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Figure 12: Eigenvalues of Ma(z) (offset by 2) with horizon N = 10 and weighting ε = 10−4.
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Figure 13: Output time response for velocity form simulation. The unconstrained response is also shown
(dashed).
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Figure 14: Input time response for velocity form simulation. The unconstrained response is also shown
(dashed).
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Figure 15: Eigenvalues of Mts(z) (offset by 2) with horizon N = 10 and weighting ρ = 155.
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Figure 16: Output time response for two-stage form simulation. The unconstrained response is also shown
(dashed).
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Figure 17: Input time response for two-stage form simulation. The unconstrained response is also shown
(dashed).
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