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Abstract

Model predictive control requires the minimization of a cost function at
each control step. Recently the authors have proposed controlling plants with
input constraints by including the constraints as a barrier with fixed weighting
in the cost function. In effect the constrained model predictive control problem
then requires an unconstrained nonlinear optimization at each control step. In
particular, if the original cost function (without constraints) is smooth and
convex, then a class of controllers is generated for the constrained problem
where the cost to be minimized is also smooth and convex and whose gradient
is zero at the optimal solution. In this paper we show that the idea may be
straightforwardly generalised to plants with state constraints. We illustrate
the idea with a simulation of a plant with rate constraints on the actuators.

1 Introduction

Model predictive control usually requires the minimisation of a cost function at
each control step. In the case where system constraints are deemed important it
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is customary to include them in the optimization problem as inequality constraints
(e.g. Mayne et al., 2000). As an alternative it is possible to ensure that constraints
are satisfied by including a convex barrier in the cost function. The idea is quite
standard for interior point methods (Fiacco and McCormick, 1968) where a weighting
is included on the barrier. As the weighting parameter tends to zero, the solution
tends towards that of the original inequality constrained optimization problem.

Recently the authors proposed including a barrier for the constraints with a
fixed weighting (Wills and Heath, 2002a); the resulting controller can be shown
to have certain favourable dynamic properties. When the weighting parameter is
sufficiently large the optimization problem can be solved using simple Newton steps.
Alternatively, for linear systems with linear and /or convex quadratic constraints, the
optimization problem can be solved extremely efficiently using simple modifications
to state-of-the-art interior point machinery (Wills and Heath, 2002b,c).

Only static input constraints were considered in (Wills and Heath, 2002a), where
a recentred barrier was introduced to ensure correct steady state behaviour. In this
paper we extend the idea to convex state constraints, and give a necessary condition
on the barrier to ensure correct steady state behaviour. Once again the condition is
satisfied by a recentred barrier. If the model is linear we are able to ensure stability
via the construction of a terminal constraint set analogous to that of Chen and
Allgower (1998). We illustrate the idea for a plant with rate constraints on the
actuators.

With non-zero weighting our proposed design transforms the limiting case control
law (with inequality constraints) to an unconstrained non-linear control law. Recent-
ly Jadbabaie et al. (2001) have suggested that including terminal constraints for a
similar class of control law is unnecessary. We discuss the implications for stability
of constrained model predictive control.

2 Barrier functions and steady state behaviour

Consider a discrete system
Ti+1 = f(It, Ut) with Xy € Rn, U € R™ (1)
subject to constraints

2 € X, u, €U forall ¢ (2)



where X and U are the convex sets

X = {zeR" ¢,x)<0,i=1,...,M"}
U = {ueR™ ¢ (u)<0,i=1,...,M"} (3)

We will impose as part of our control law the additional terminal constraint
ziyn € X CX (4)
with
X; = XN{zeR™ ¢4(x) <0,i=1,..., M} (5)
Let X; and U; be the sequences
Xi = [Tig1, Teg2, - o Tign]
Us = [, Upgrs ..o U N—1] (6)

which are required to lie in the constraint sets X and U, the respective natural
extensions of X (with X;) and U

X = {Xt:xtHEX,izl,...,Nandxt+N€Xf}
U = {U:u; €U0,i=0,...,N—1} (7)

Suppose we desire x; and u; to reach ., and u,, respectively in steady state. The
natural constraints on x,, and u,, are

Tss = f(xss’uss)y Tss € Xf; Uss € U (8)
We will impose the further restriction
Tss € INtXy, ugs € intU 9)

and assume 24, and u,s exist. Similarly we will assume the interiors of X and U are
non-empty.

Remark 1 Often xg, and us, are themselves computed via some separate constrained
optimization (Muske and Rawlings, 1993). Suppose such a constrained optimization
may be expressed as

(%, uk,) = argmin Jgs(x, u) subject to (8) (10)

ss? Ss
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We propose to compute x5 and ugss as

(@5, uss) = argmin {Jgs(z, u) + pssBss(z,u)} subject to (8) (11)

where Bgs(z,u) is an appropriate self-concordant barrier (Nesterov and Nemirovski-
i, 1994) and pss > 0. The barrier ensures (9) is satisfied. Meanwhile, provided
wo1s small, the duality gap ensures that for a wide class of cost and barrier that

Jss(-rssauss) - Jss(l'zs, U:S) 18 small.

We propose the following model predictive control law.
Algorithm: For some suitable weighting matrices P, QQ and R let

N-1

T Xe, Us) = llaeen = 2ssllp + D (2o — 2asl[G + i — sl [7) (12)
i=0

Let B(X;,U,) be some suitable self-concordant barrier for the constraint set X x U
and choose some fized p > 0. We may write

Xi = f(z, Uy) (13)
for some f and hence define
J( X, Uy) = J(zy, Uy)
B(Xy.U) = B(z,Uy) (14)
Then at each time step t, given x;:

1. Compute the sequence U} as

Ul (xy) = arg H(ljitn {j(xt, U,) + puB(xy, Ut)} (15)

2. Implement uf(xy), the first term in U (zy)

Let Uss be U; evaluated at us; = ug for i = 0,..., N — 1, and let BSS(Ut)
be B(:I:t, U;) evaluated at x; = x4. Then since J (x5, Up) attains its minimum at
U, = Uy, and since Uy, lies on the interior of U, a necessary condition for the system
to reach x4 and u,, in steady state is

VBss(Uss) =0 (16)
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Let u],; denote the jth element of the vector u;, and define ! 4 similarly. Then

8B(xt,Ut) 6B Xt,Ut Z Z 8B Xt,Ut al‘t+]

j B (17)
Ouy 3“t+z k=it+1 I=1 xt+k a“t+i
Hence a sufficient condition for (16) is
VB(Xss,Uss) =0 (18)

Note that the gradient in (16) is with respect to the elements of Uy, while the gra-
dient in (18) is with respect to the elements of U; and X;. Given an arbitrary
self-concordant barrier F(X;, U;) for the constraint set X x U, we may construct a
recentred barrier B(Xy, Uy) satisfying (18) as

B(Xt; Ut) = F(Xt; Ut) - <VF(XSS7 Uss)a (Xt; Ut)> (19)

Remark 2 [t follows immediately that B(X;,U;) is a convex barrier for X x U
(see also Nesterov and Nemirovskii, 1994, p69). Furthermore, if complexity result-
s for the barrier F(X;,U;) are available, then complexity results for solving (15)
can be obtained via subsuming the linear term (VF (X, Uss), (X, Up)) into the cost
J( Xy, Up) —see Wills and Heath (2002b,c).

Example: the recentred logarithmic barrier

Suppose we choose F'(X;, Uy) as the logarithmic barrier for X x U

F(X,Uy) = — Z Z In(—cq j(Te4i)) — Zln(—CfJ(CEtJrN))
- Z Z In(—cu (i) (20)



Then

M=

o Ve () -y Veaslreon)
-1 Ca,j ('Tt'i‘l) l / 1 Cg j (-TH—N) ’

J

VF(X,,U,) = (-

Mmf T MY T MU T r
-y Vepiean) | 3 Vewj(un) 3 Ve, j(upn)
H oopilenn) |\ H cwilw) )T\ cuy(wn)
(21)

and the recentred barrier is

N T Mt
vcw] Iss) VCf,j(ISS)
Xt Ut Z (Z e x ) ) Titi + Z m Ti4N
i=1 i=1 x,j\ 58 j=1 f.j\Lss

+Z (Z Ve, Uss)> Ui + F(X. Uy) (22)

Cuj(Uss)

In particular, if a state constraint ¢, j(x;4;) is linear with form

Coj(Teri) = ) Trsi — baj (23)
then
Ve i(xss) T B af,jl'ﬂ-i
— | Tt+i= 5 (24)
C:c,j(zvss) ax,jxss - bx,j

Figs 1 and 2 illustrate such recentring for a very simple state constraint.

3 Closed-loop stability via terminal constraint set
In the sequel we will restrict the system (1) to be linear
Tyy1 = Axy + Buy with z; € R", v, € R™ (25)

In (Wills and Heath, 2002a) stability for MPC with a recentred barrier was demon-
strated via the construction of a terminal constraint set similar to that of Chen and



Allgower (1998). Ouly linear and quadratic input constraints were considered, but
the extension to more general convex constraints on both the inputs and the states
is straightforward. We include a construction and stability proof for completeness.

Let @ and R be positive definite symmetric matrices. Further let Q* = nl + Q)
for some scalar n > 0. We consider the following algebraic Riccati equation:

P = (A—-BK)'P(A—-BK)+ Q"+ K'RK
K = (B'PB+R)™'BTPA (26)

If system (25) is stabilisable, then there exist both a unique positive definite sym-
metric matrix P which satisfies (26) and a linear stabilising control law r¢(z) =
Uss — K(x — xg4).

We will assume that the barrier B(Xy, U;) is constructed as

B U) = 3 Buleend) + Bylaren) + S Bultes) (27)

where B,, By and B, are suitably recentred barriers for X, X; and U respectively. We
will further assume each barrier term is zero at its minimum. We have the following
lemma:

Lemma 1 For the stabilising controller rk¢(x) determined above we can define a
series of regions X, sets X, and X, and a scalar oupnae > 0 as:

Xoe = {2€R": (v —24)" Pz —2) < a}
X, = {zeR"llz — .|l > u[Bu(rs(z)) + Bo(Az + Brg())|}
Omax = max{a >0:X, C {X, NX}} (28)

Furthermore we can define a terminal constraint set Xy = X that is invariant

Qmax

under the control law k().

Proof: Since n > 0 may be chosen to be arbitrarily large and uss € intU we can
always obtain non-empty sets satisfying (28), and hence qumay > 0. We have

r € X, = {kf(z) € U and Az + Br¢(x) € X} (29)

It follows immediately that X, is invariant under the control law k¢(x) (see for
example Chen and Allgower, 1998). O



We will choose By(z) to be the logarithmic barrier for the constraint set X;
defined above:

Bi(z) = In(am.x) —In (ozmax — (2 — 24) Pz — xss)) (30)
Since
VBf(l'ss) =0 (31)

the barrier does not require recentring.

Let X7 (x;) be the state evolution corresponding to the optimal control sequence
UP(z¢) (15). Define also the control sequence U}, (x;) with corresponding state
evolution X}, (z¢41) as

Ut1+1(xt) = [U§+1(5Ut)a e -/uf+N—1(fL’t)v Ut1+N(xt)]
Xt1+1(75t) = [I§+2(xt)a e 7I?+N(It); $%+N+1(xt)] (32)
with
“1}+N($t) = I{f($§+N($t))
$g+N+1($t) = A$?+N(It) + BULN(mt) (33)

Note we have the relation
Itl+N+1(mt) — Ty = (A — BE) (27, n(7¢) — Tss) (34)
Let Xy be the set of states = for which UP(x) and X7 (z) exist. Then we can say

Lemma 2 If x, € Xy then (i) Ul (z;) is feasible, (ii) the corresponding state evo-
lution X}, (x¢) is feasible and (iii) the following inequality holds.

J(@,1, Uy (1)) + nB (2,0, Ul (m0)) < (27, UP () + pB(ay, U (z1)) (35)
Proof:

(i) Since x, € Xy the first N —1 terms in UL, (x;) each lie in U. Furthermore the
state 29, n(x;) € Xy. From (28) we have u}, y(z;) € U and hence U}, (x;) € U.



(i) Since x; € Xy the first N — 1 terms of X}, ,(x:) each lie in X. Since Xy is
invariant under control law k¢ and xf, \(x;) € Xy it follows that xy, . (z:)
also lies in X;. Hence X}, (x) € X.

(11i) For conciseness we will drop dependence on x; from our notation. From (26)

we have
j($?+17Ut1+1) - j(l’taUto)
= ||x%+N+l - l’ss||§> + ||x$+N - x88||2Q + ||ut1+N - uss“?«z
2ty = wasllp = |70 — 2ssl1fy — |} — w7
= —nllefiy — vl = llze — 2llG — luf — sz (36)
Similarly

B(a,1, Upyr) = B2, Uf) = By(@ein1) = Ba(afyy (21)
+By(2rni1) = Be(aiyn(21) + Bu(uen) — Bu(ui(z:))  (37)
From the definition of X,, we thus find

j(m?+1a Ut1+1) + MB(I?+17 Ut1+1) - j(Ita Uy) — uB(wt, Uy)

< uBr(wiy11) — Brlafin)] (38)
and it suffices to observe
Omnax — ||79, n — sl
Bf(xi}—i—N—i—l)_Bf(x?-i-N) = ln (Oé a_||x1t+ _;S ||2
max t+N+1 ssllp

— Iy Qmax — ||w§+N _2x38||%3
Qmax — ||$t+N - xss| |P—Q*—KTRK

0 (39)

IN

0

We may now state:

Result 1 Suppose we construct a barrier according to (27) with B, and B, appro-
priate convex recentred barriers and By given by (30) for the terminal constraint set
Xy given by (28). Then for x, € Xy the model predictive control law is stable for the
linear plant (25).



Proof: It suffices to show that

j(xt?—',—la Uto+1($?+1)) + Mé(xgﬂa Uto+1($?+1))
< J(x, U () + uB(zy, U () (40)

: o [0 N ,
But since Uy, (x7,,) is chosen optimally

j(I§+1a Ufﬂ(ﬁﬂ)) + MB(I§+1J Ufﬂ(ﬁﬂ))
< J(93§+1> Utl+1($t)) + MB(95§+17 Ut1+1($t)) (41)

and the result follows. O

4 Illustration: plant with rate constraints on the
actuators

Consider a linear SISO (single input single output) system
Z141 = A%y + Buy (42)
with absolute and rate constraints on the inputs
Ut < Umax
Ut 2 Upin

U — U1 < AUpax
Up — U1 > AUpin (43)

Let the desired steady state input be us. Note that even for a regulation problem
uss will not in general be zero due to plant disturbances.
A choice of recentred logarithmic barrier for the absolute constraints would be

Bu(ut) = In (M) + In (Uss - Umin> - Ut — Ugg n Uy — Ugg

Umax — U¢ Ut — Umin VUmax — Uss Uss — Umin
(44)
When v, = —Umax this reduces to
2 2

v —Uu QUgs(Ugg — Ut

B (ut) — hl max SSs SS( SS ) (45)
u V2 — 2 V2 — 2
max t max ss
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In steady state u;11 —uy = 0 so a choice of logarithmic barrier for the rate constraints
would be
Av —Avp;
Ba(ugyr,uy) = 1n( — ) +1n ( — )
(e, AUmax — Usp1 + Ut Utp1 — U — AUpin
Upp1 — Up  Ugpq — U
o t+1 t t4+1 t (4:6)

AUmax A'Umin

When Avpin = —Avmax this reduces to

Av?
BA (U,H_l, Ut) = ln ( max ) (47)

AU?nax - (U’t-i-l - ut)2

and no recentring is necessary.

If we consider the rate constraints as input constraints they do not appear in the
form we originally assumed (2,3). Rather we must augment the plant and consider
them as state constraints. The augmented system

.Tt+1 = A.Tt + But (48)

is formed with

A 0 0 B
A=10 0 O0|,B=1|1 (49)
0 -1 0 1
We may then express the rate constraint as a constraint on the nth state a}:
Av —Avp; P z}
Bx -] max 1 min B t . t
(a:t) " (Avmax - QJ?) i (.T? - AUmin) A/Umax AUmin
(50)
and when Auvyi, = —Avgax this reduces to
Av?
B, = 1 e 51
(xt) ! <Avr2nax - ($?)2) ( )

It is now straightforward to construct a terminal constraint set according to (28).
Figs 3 to 6 illustrate results from a specific simulation example. The plant is

5o _ [raer —02m0] . [17
t+1 — 1 0 t 0 t
v = [0.3331 0.2176 ] % (52)
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An receding horizon controller is implemented with a 20 sample horizon. The state
weighting matrices (Q and R are given by

Q 0.01 x C*C
R =1 (53)

while P is found by solving the appropriate Riccati equation. A simple ‘DMC scheme’
observer is used (Maciejowski, 2002) with integral action incorporated via an addi-
tional disturbance observer. In all cases the absolute value of u; is constrained to
|u;| < 0.5. No terminal constraints are introduced.

Fig 3 shows unit step responses (up and down) for the case where rate constraints
are symmetric |us41 — | < 0.1. Three responses are shown: (i) with a limiting
case inequality constrained model predictive control law (with the corresponding
optimization problem solved via an active set method at each control step), (ii) with
a barrier included in the cost function with weighting g = 107% and (iii) with a
barrier included in the cost function and a weighting p = 1. To the eye cases (i) and
(ii) are indistinguishable, while the response for (iii) is considerably smoother.

Fig 4 illustrates responses under similar conditions, but this time the rate con-
straints are given by —0.05 < uzy1 —u; < 0.1. The barriers for cases (ii) and (iii) are
not recentred, and significant steady state error occurs for case (iii). Fig 5 illustrates
responses where the barriers are recentred. This time the steady state behaviour
is correct. Finally Fig 6 illustrates the evolutions of u;;1 — u; under conditions
corresponding to those of Fig 5.

5 Discussion: constrained MPC posed as uncon-

strained non-linear optimization

Model predictive control is inherently non-linear. It has been observed that if both
the plant and constraints are linear then a model predictive control law with a
quadratic cost may be piecewise affine (Bemporad et al., 2000, 2002; Seron et al.,
2000)—the result follows immediately from the KKT (Karush-Kuhn-Tucker) condi-
tions for optimality, and is indeed exploited in active set methods for solving quadrat-
ic programs (e.g. Gill et al., 1981). But the idea cannot be extended to more general
plants or constraints (nor indeed to more general convex cost functions). Kouvari-
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takis et al. (2002) also question the practicality of using the observation to trade off
on-line complexity with off-line computation. Note in particular that convex state
constraints can be usefully incorporated to ensure robustness (Kothare et al., 1996;
Hansson, 2000).

Interior point algorithms offer an alternative to active set methods for solving
constrained optimization problems, and may be applied efficiently to a wide class of
convex problem (Nesterov and Nemirovskii, 1994). In (Wills and Heath, 2002a) we
proposed a novel class of model predictive controller inspired by interior point meth-
ods. In particular we suggested that stopping short on the central path (equivalently
fixing a lower bound on the barrier weighting) could have beneficial effects in terms
of both computational efficiency and closed loop behaviour for control problems with
input constraints. In this paper we have shown the idea generalises straightforwardly
to control problems with state constraints.

One aspect of such a control scheme is that the optimization problem to be solved
at each step is the minimization of an unconstrained convex cost function in the
sense that the solution always lies on the interior of the constraint set U and the
gradient of the cost function is zero at the solution. Indeed this requirement motivat-
ed the introduction of the recentred barrier. Recently Jadbabaie et al. (2001) have
shown that it may be possible to demonstrate stability of unconstrained nonlinear
model predictive controllers without the introduction of terminal constraints. A nat-
ural question would be whether the proposed class of controllers might be analysed
in such a fashion. Certainly the simulation of the previous section indicates that it
is not necessary to introduce a terminal constraint set (this is, of course, well known
for more conventional linear model predictive controllers). The class of controller
we have proposed includes more conventional model predictive control as a limiting
case (as the barrier weighting y — 0). This suggests a possible new avenue for the
analysis of model predictive control.

6 Conclusion

In (Wills and Heath, 2002a) we proposed a novel class of model predictive control
for plants with input constraints. The idea is to include a barrier in the cost function
and find the solution for a fixed weighting on the barrier. A necessary condition for
correct steady state behaviour is that the gradient of the cost function is zero at the
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desired steady state value.

In this paper we have shown that the idea generalises in a straightforward manner
to systems with state constraints. We have illustrated the result for a plant with
rate constraints on the actuators, and shown both how stability can be guaranteed
using terminal constraints, and also demonstrated the closed loop behaviour with a
simple simulation example.

One interesting observation is that such model predictive controllers may be
thought of as unconstrained, in the sense that the solution always lies on the interior
of the constraint set. We postulate that such an observation may be useful for the
analysis of closed loop stability of model predictive control.

References

Bemporad, A., M. Morari, V. Dua and E. N. Pistikopoulos (2000). The explicit
solution of model predictive control via multiparametric quadratic programming.
American Control Conference, Chicago.

Bemporad, A., M. Morari, V. Dua and E. N. Pistikopoulos (2002). The explicit linear
quadratic regulator for constrained systems. Automatica 38, 3-20.

Chen, H. and F. Allgower (1998). A quasi-infinite nonlinear model predictive control
scheme with guaranteed stability. Automnatica 34(10), 1205-1218.

Fiacco, A. V. and G. P. McCormick (1968). Nonlinear Programming: Sequential
Unconstrained Minimization Techniques. John Wiley & Sons.

Gill, P. E.;, W. Murray and M. H. Wright (1981). Pratical Optimization. Academic
Press. New York.

Hansson, A. (2000). A primal-dual interior-point method for robust optimal control of
linear discrete-time systems. IEEE Transactions on Automatic Control 45(9), 1639
—1655.

Jadbabaie, A., J. Yu and J. Hauser (2001). Unconstrained receding horizon control
on nonlinear systewms. IEEE Transactions on Automatic Control 46(5), 776-783.

14



Kothare, M. V., V. Balakrishnan and M. Morari (1996). Robust constrained model
predictive control using linear matrix inequalities. Automatica 32, 1361 1379.

Kouvaritakis, B., M. Cannon and J. A. Rossiter (2002). Who needs qp for linear mpc
anyway?. Automatica 38, 879-884.

Maciejowski, J. M. (2002). Predictive control with constraints. Pearson Education
Limitied, Harlow.

Mayne, D. Q., J. B. Rawlings, C. V. Rao and P. O. M. Scokaert (2000). Constrained
model predictive control: Stability and optimality. Automatica 36, 789-814.

Muske, K. R. and J. B. Rawlings (1993). Model predictive control with linear models.
AIChE Journal 39(2), 262 287.

Nesterov, Y. and A. Nemirovskii (1994). Interior-point Polynomial Algorithms in
Convex Programming. STAM Philidelphia.

Seron, M. M., J. A. De Dona and G. C. Goodwin (2000). Global analytical model
predictive control with input constraints. 39th IEEE Conference on Decision and
Control, Sydney.

Wills, A. G. and W. P. Heath (2002a). A recentred barrier for constrained receding
horizon control. American Control Conference, Anchorage, May 8-10.

Wills, A. G. and W. P. Heath (20020). Path-following algorithms for a class of reced-
ing horizon controllers. STAM Conference on Optimization, Toronto, May 20 22.

Wills, A. G. and W. P. Heath (2002¢). Using a modified predictor-corrector algorithm
for model predictive control. To be presented at 15th IFAC World Congress on
Automatic Control, Barcelona, July 21 26.

15



Figures

Barrier for x 0 [10,1]

5
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°

Figure 1: lllustration of a barrier for state constraint —10 < x — z,, < 1. The cost
function without barrier has its minimum at x — x5, = 0, but the barrier has its minimum
at x = 0.

Figure 2: lllustration of a recentred barrier for state constraint —10 < x—z,, < 1. Both
the cost function (without barrier) and the barrier itself have their minima at  — 2,5 = 0.
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Figure 3: Simulation example with (i) no barrier, (i) x = 107% and (iii) © = 1, and
symmetric rate constraints. Cases (i) and (ii) are indistinguishable to the eye, but the
response for case (iii) is smoother.
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Figure 4: Simulation example under similar conditions to those for Fig 3, but with
asymmetric rate constraints. There is no recentring, and the steady state behaviour for
case (iii) is significantly awry.
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Figure 5: Simulation example under similar conditions to those for Fig 4. The barriers
are recentred.
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Figure 6: Evolution of u;,; — u; under conditions corresponding to those of Fig 5.

18



