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SUMMARY

This paper presents a construction of low-density parity-check (LDPC) codes based on the incidence
matrices of oval designs. The new LDPC codes have regular parity-check matrices and Tanner graphs free
of 4-cycles. Like the finite geometry codes, the codes from oval designs have parity-check matrices with a
large proportion of linearly dependent rows and can achieve significantly better minimum distances than
equivalent length and rate randomly constructed LDPC codes. Further, by exploiting the resolvability of
oval designs, and also by employing column splitting, we are able to produce 4-cycle free LDPC codes for a
wide range of code rates and lengths while maintaining code regularity. Copyright # 2003 AEI.

1. INTRODUCTION

Low-density parity-check (LDPC) codes were first pre-

sented by Gallager [1] in 1962 and have recently been red-

iscovered and extended [2, 3]. By specifying block codes

with a sparse parity-check matrix, Gallager presented an

iterative decoding algorithm with complexity linear in the

block length and decoding performance remarkably close

to the Shannon limit [1, 2, 4]. It is known that Gallager’s

iterative decoding algorithm, called sum-product decoding,

converges to the optimal solution provided the Tanner

graph of the code is free of cycles [5, 6]. The existence

of short cycles in the Tanner graph prevents an exact

error-probability analysis of iterative decoding procedures,

and the shorter are the cycles in the graph, the sooner the

analysis breaks down. To date, randomly constructed

LDPC codes have largely relied on the sparsity of the par-

ity-check matrix to avoid short cycles in the Tanner graph.

Small cycles in the Tanner graph associated with an

LDPC code can be systematically avoided by taking as

parity-check matrices the incidence matrices of suitably

chosen combinatorial designs [7, 8]. In Reference [7],

the incidence matrices of Steiner triple systems (STS)

were proposed as parity-check matrices for LDPC codes

and in References [8–10] the range of available LDPC

code parameters from STS was expanded by using a subset

of the resolution classes of the resolvable Kirkman triple

systems. A second class of algebraic LDPC codes, from

the incidence matrices of finite projective and Euclidean

geometries, were presented in References [5, 11, 12]. Like

the codes from STS, small cycles are avoided in the Tanner

graph of the codes from finite geometries. Further, the

finite geometry codes produce excellent error correction

performances with iterative decoding, a performance

attributed to the many linearly dependent rows in their

parity-check matrices.

In this paper we present a new class of algebraic LDPC

codes, taking as parity-check matrices the incidence

matrices of combinatorial structures known as oval

designs. The family of parity-check matrices so obtained

have small, uniform row and column weights, and have

Tanner graphs which are free of small cycles. Moreover,
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the incidence matrices of oval designs have column

weights which are no longer fixed, as for STS, but grow

along with the number of parity-check equations. The

properties of the oval codes are similar to those of the finite

geometry codes, including a large proportion of linearly

dependent rows in their parity-check matrices.

As our construction is based on combinatorial design

theory, we present in Section 2 of this paper some back-

ground material on designs before describing oval designs

in particular. Section 3 defines the codes from oval designs

and Section 4 discusses the performance of oval codes with

sum-product decoding. Section 5 concludes the paper.

2. COMBINATORIAL DESIGNS

Let P be a v-set and suppose B is a collection of k-subsets

of P with the property that each t-subset of P is contained

in exactly l of the elements of B. Then the ordered pair

D ¼ ðP;BÞ is called a t-ðv; k; lÞ design, or simply a t-

design. The elements of P are called points and the ele-

ments of B are blocks. A regular design is one with a con-

stant k points per block and r blocks containing each point.

Thus, a regular design has six parameters: t, v, b, r, k and l

where b is the number of blocks and is sometimes denoted

as t-ðv; b; r; k; lÞ design. However, these parameters are

not independent, as in any regular design, bk ¼ vr.

A 2-design is also called a balanced incomplete block

design (BIBD). If t � 2 and l ¼ 1, then a t-design is called

a Steiner system or a Steiner t-design. A Steiner 2-design

thus has the property that every pair of points in the design

occur together in exactly one block of the design. A reso-

lution of a design D is a partition of the blocks of D into

classes such that each point of D is in precisely one block

from each class; such a design is said to be resolvable.

Every design can be described by a v� b incidence

matrix N where each column in N represents a block Bj

of the design and each row a point Pi:

Ni;j ¼
1 if Pi 2 Bj

0 otherwise

�

The incidence graph of D has vertex set P
S

B with two

vertices x and y connected if and only if x 2 P and

y 2 B or x 2 B and y 2 P. A cycle in the incidence graph

is a sequence of connected vertices which start and end at

the same vertex in the graph and contain no other vertices

more than once. The length of the cycle is simply the num-

ber edges it contains and the girth of a graph is the length

of its smallest cycle. As the incidence graph is bipartite,

the length of a cycle must be even and at least four.

In the context of this work, we will henceforth follow

the notation established by Kou et al. [11, 12] and denote

by g and � the column and row weights of N respectively.

This avoids the unfortunate coincidence of the symbol k to

denote both column weight of the incidence matrix of a

design and the number of information symbols in an

½n; k; d� block code.

The oval designs we consider are constructed from pro-

jective planes, which have themselves been recently pro-

posed for the algebraic construction of LDPC codes [11].

Background material on oval codes and projective planes

is presented in the Appendix. Briefly, a projective plane of

order q, PG2ðqÞ, is a set of q2 þ qþ 1 lines and q2 þ qþ 1

points such that every line passes through exactly qþ 1

points and every point is incident on exactly qþ 1 lines

with any pair of points in the plane incident together in

exactly one line. An oval, O, in a projective plane is a

set of qþ 2 points that meet each line of the plane in 0

or 2 points. The oval design is the incidence structure hav-

ing, for points the lines of the plane exterior to O and for

blocks the points of the plane not on the oval O, called the

retained points. Incidence is given by the incidence of the

projective plane; that is, in an oval design, a point is con-

sidered to belong to a block if the corresponding point and

line in PG2ðqÞ are incident. Oval designs are Steiner 2-

ðqðq� 1Þ=2; q=2; 1Þ designs with qþ 1 blocks through

each point and q2 � 1 blocks (see e.g. Reference [13,

Chapter 8]).

Oval designs are also resolvable, with q� 1 blocks per

resolution class and qþ 1 classes in each design [13,

Chapter 7]. Figure 1 shows an incidence matrix for the

oval on six points constructed in the Appendix with col-

umns partitioned into resolution classes. Zero entries are

indicated by dots.

3. CONSTRUCTIONS OF LOW-DENSITY

PARITY-CHECK CODES FROM OVAL DESIGNS

In this section, we employ the incidence matrices of

the oval designs described in the previous section as

1 : : 1 : : : : 1 : 1 : 1 : :
: : 1 : : 1 : : 1 : : 1 : : 1

: 1 : 1 : : 1 : : : : 1 : 1 :
: : 1 : 1 : : 1 : : 1 : : 1 :
: 1 : : : 1 : 1 : 1 : : 1 : :
1 : : : 1 : 1 : : 1 : : : : 1
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6

6

6

6

6
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Figure 1. The incidence matrix of the 2-(6; 2; 1) oval design
constructed in Appendix.
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parity-check matrices of LDPC codes; we shall refer to the

codes so obtained as oval codes. Further, we will employ

two methods to increase the range of available LDPC

codes derived from oval designs. Firstly, the resolvability

of the oval designs will be used to produce lower rate

codes, which we call R-oval codes and secondly, column

splitting will be used to produce even higher rate codes,

which we call S-oval codes. In both the cases, the codes

obtained will also be regular and free of 4-cycles.

3.1. LDPC codes from oval designs

The incidence matrix of an oval design is used as the parity-

check matrix of a binary LDPC code to give favourable

properties to the code. In particular, the girth of the Tanner

graph of an oval LDPC code corresponds to the girth of the

incidence graph of the oval design. The incidence graph of

an oval has girth at least 6 since no two points can be in the

same two blocks together. Thus choosing an oval design to

construct an LDPC code guarantees the absence of 4-cycles

in the code. As H ¼ N the code will have v parity checks

and block length n ¼ b. Oval designs are regular and so all

columns of H have constant weight g and all rows constant

weight �; such a code is said to be ðg; �Þ-regular.
The incidence matrix of a design is not necessarily full

rank and so the the code dimension is k ¼ n� rank2ðNÞ.
For instance, the Euclidean and projective geometry codes

have a significant proportion of linearly dependent rows in

their incidence matrix and so give quite high rate codes

despite N being square [12]. Oval designs also have a sig-

nificant portion of linearly dependent rows which give the

codes extra parity-check equations and subsequently

improved decoding performances with sum-product decod-

ing. Oval designs are the same length as the Euclidean geo-

metry (EG) designs but produce higher rate LDPC codes.

We define oval codes as binary LDPC codes with parity-

check matrix, H, whose rows are the the incidence vectors

of the lines of PGð2; 2mÞ exterior to a regular oval O. The

columns of H correspond to points of the plane not on O.

Thus H has 22m � 1 columns and 2mð2m � 1Þ=2 rows.

Since there are 2m þ 1 ones per row of H and 2m�1 ones

per column, H is regular and has a density of

2m þ 1

22m � 1
ð1Þ

The 2-rank of the incidence matrix of a regular oval design

is known to be given by Reference [14]

rank2ðWð�;OÞÞ ¼ 3m � 2m ð2Þ
which yields both the number of code message bits

k ¼ ð2mÞ2 þ 2m � 3m � 1 ð3Þ

and number of linearly dependent rows in H:

22m�1 � 2m�1 � 3m þ 2m ð4Þ

Avoiding 4-cycles guarantees a minimum distance of at

least 2m�1 þ 1 via Massey’s bound [15], as each bit in the

code is checked by g ¼ 2m�1 orthogonal parity-check

equations. Thus the minimum distance of the oval codes

increases with the length of the code as

d � 1

2
ð

ffiffiffiffiffiffiffiffiffiffiffi

nþ 1
p

þ 1Þ

However, this also means that the density of the parity-

check matrix decreases only with the square root of the

code length as opposed to proportionally to the code length

as is the case for codes definedwith constant columnweight.

For example, the oval design in Figure 1 has a 6� 15

incidence matrix with column weight 2 and row weight 5.

Thus, the oval LDPC code from this design is (2;5)-regular
with length 15. The 2-rank of the incidence matrix is 5 (the

last row is linearly dependent on the previous five) and so

the oval LDPC code will have dimension k ¼ 15�5 ¼ 10.

The minimum distance of the code is at least 3 by

Massey’s bound. Further, by observation we see that col-

umns 1, 6 and 9 sum to zero modulo 2 so there is a code

word of weight 3 with non-zero entries in bit positions 1, 6

and 9 and so the code minimum distance is exactly 3.

Table 1 shows the parameters of the oval designs and

their corresponding oval codes for m ¼ 2; . . . ; 6. For the
two shortest codes, the minimum distance has been

obtained by exhaustive computation. For the longer codes,

corresponding to m � 4 in Table 1, the range of minimum

distances has been obtained using Magma [16] for an

upper bound and Massey’s lower bound applied to oval

LDPC codes.

The girth of the oval codes is always 6, as the re-

quirement that l ¼ 1 and t ¼ 2 guarantees the existence

of 6-cycles as well as the absence of 4-cycles. Further,

the structure associated with the Steiner 2-designs allows

Table 1. Parameters of codes from oval designs.

m H(�; b; �; g) rank2(H) [n; k; d]

2 (6; 15; 5; 2) 5 [15; 10; 3]
3 (28; 63; 9; 4) 19 [63; 44; 5]
4 (120; 255; 17; 8) 65 [255; 190; 9–10]
5 (496; 1023; 33; 16) 211 [1023; 812; 17–36]
6 (2016; 4095; 65; 32) 665 [4095; 3430; 33–78]
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the use of counting arguments to show that there are

exactly

n

3

g

2

� �

ð�� 1Þðg� 1Þ

¼ 2m
2m�1

2

� � ð2m�1 � 1Þð22m � 1Þ
3

;

6-cycles in an oval code.

To see this, consider that every pair of points is incident

together in exactly one block of the design. So if we

choose an arbitrary pair of points ðP1;P2Þ in a block B

together, P1 is incident in �� 1 blocks other than B, say

fD1; . . . ;D��1g, (which cannot contain P2). Likewise P2

is incident in �� 1 blocks other than B, say

fE1; . . . ;E��1g, (which cannot contain P1). Since every

pair of points must be incident in a block together, all

the ð�� 1Þðg� 1Þ points other than P1 incident in the

blocks fD1; . . . ;D��1g must be incident in the blocks

fE1; . . . ;E��1g so that each point is incident with both

P1 and P2. In fact the only points not in the sets

fD1; . . . ;D��1g and fE1; . . . ;E��1g are the points incident
with P1 and P2 in B. We can then connect a 6-cycle from

P1 to a point inDi and through the same point in Ej, back to

P2 to form a 6-cycle. This can be done ð�� 1Þðg� 1Þ
times for each pair of points ðP1;P2Þ. There are ð g

2
Þ pairs

of points in a block and n blocks in the design. A 6-cycle

involves a pairs of points in three different blocks and the

result follows.

LDPC codes from oval designs have lower column

weight and fewer parity-checks than the equivalent length

EG codes but more than the equivalent length STS LDPC

codes. They therefore represent a middle ground in the

tradeoff between minimum distance and decoding perfor-

mance. However, as for the codes from finite geometries

and STS, as the length of the oval code increases so too

does the rate and so the longer oval LDPC codes are very

high rate codes. The solution, which is to consider the

resolution classes of oval designs to obtain low rate codes,

is presented in the following section.

3.2. Lower rate LDPC codes from resolvable

oval designs

The advantage of the resolvability of oval designs, for use

as LDPC codes, occurs when only a subset of their reso-

lution classes are employed to construct H. By removing

from H all the columns in a resolution class the weight of

every row in the parity-check matrix is decreased

by exactly 1 and the matrix is still regular. As the col-

umns of the incidence matrices of oval designs can be

divided into gn=v resolution classes with v=g columns

per class we can generate a regular code with any block

length

v

g
� l for l 2 1; 2; . . . ; g

n

v

n o

So by using a fraction of the resolution classes of an oval

design to define the LDPC codes, we can achieve codes

with low rates and a wider range of code lengths.

An R-oval code formed from the resolution classes of an

oval on v ¼ 2mð2m � 1Þ points will have at least

22m�1 � 2m�1 � 3m þ 2m linearly dependent rows in its

parity-check matrix and a minimum distance lower

bounded by 2m�1 þ 1. This is because removing columns

from the incidence matrix can not increase its rank and nor

can it decrease the number of orthogonal parity-check

equations on each bit.

For example, the resolution classes of the oval on 120

points can be used to construct regular codes free of 4-

cycles with the following parameters.

½240; 175; 9�; ½225; 160; 9�; ½210; 145; 9�;
½195; 130; 9�; ½180; 115; 9�; ½165; 100; 9�;

½150; 85; 9�; ½135; 70; 9�; ½120; 55; 9�;
½105; 44; 9�; ½90; 33; 9�; ½75; 22; 9�; ½60; 11; 9�:

(Note that the number of linearly dependent parity-checks

in each code is 120� k þ n.)

The decoding performance of the length 210 code is

shown in the following section. A different selection of

resolution classes can result in codes with the same length

but with variations in rate depending on how many of the

existing linearly dependent parity-checks are made line-

arly independent by removing columns of N.

3.3. Higher rate LDPC codes from oval designs using

column splitting

One feature of both the oval and S-oval LDPC codes is

their very high column weight. This is good for the code

minimum distance, however minimum distance alone does

not determine the decoding performance with sum-product

decoding. The larger column weight which gives rise to

this increase in decoding performance also increases the

density of H, and we will see in the following section that

a decoding performance degradation can result.

402 S. R. WELLER AND S. J. JOHNSON

Copyright # 2003 AEI Euro. Trans. Telecomms. 2003; 14:399–409



This motivates the third method of generating LDPC

codes from oval designs, column splitting, a technique also

employed in Reference [12]. The large column weight of

oval designs allows us to split the non-zero entries of one

column into s lower weight columns. The resulting matrix

will have s times as many columns as the original, the

same number of rows and row weight and most impor-

tantly will still be free of 4-cycles. This is in effect a

pseudo-random construction of LDPC codes initialized

with the oval design. Starting with an oval design allows

very high rate LDPC codes to be derived which are both

regular and free of 4-cycles. The minimum distance of

the codes is still lower bounded by gþ 1, where g is now

defined as the weight of the smallest weight column in the

parity-check matrix.

For example, each column in the incidence matrix of the

2-(496; 1023; 33; 16) oval design can be split into four wei-
ght 4 columns to produce a (4;33)-regular ½4092; 3596;
� 5� LDPC code without 4-cycles. Table 2 shows the para-

meters of some of the LDPC codes we have obtained using

this method.

We can also obtain codes which are irregular by using

uneven column splitting. The oval design on 496 points

for example can provide an S-oval code of length 4092

with half the columns of weight 4 and a quarter of the col-

umns of each weight 3 and 5. The row weights of the code

will still be 33 and the corresponding Tanner graph will

still be free of 4-cycles.

4. SIMULATION RESULTS USING

SUM-PRODUCT DECODING

In this section, we show the performance of LDPC codes

derived from oval designs when decoded using the sum-

product decoding algorithm [4] on an additive white Gaus-

sian noise (AWGN) channel. In each simulation, a maxi-

mum number of iterations has been set and the standard

stopping criterion for LDPC codes, zH 0 ¼ 0, is applied

to terminate the decoding early if the hard decision of

the bit probabilities, z, is a valid codeword.

The LDPC codes from ovals are compared to randomly

constructed LDPC codes and existing algebraic LDPC

codes from STS codes [7] and EG codes [11, 12]. For the

random LDPC codes we have used the following construc-

tion method [2, 4] using source code from Reference [17]:

* g ones are placed in each column of H with an attempt

made to keep the number of ones in each row approxi-

mately the same,

* extra ones are randomly added so that the weight of

each row is greater than one,

* to remove 4-cycles, ones are moved randomly within

columns involved in the cycle.

Regular randomly constructed codes perform best with

column weight 3 [4], and so we have constructed random

LDPC codes with this column weight. Further, in an

attempt to get the best random LDPC codes, we have gen-

erated random LDPC codes with as few 4-cycles as possi-

ble where this produces a better code. However, there is a

tradeoff between removing code cycles and obtaining code

regularity as the process of removing 4-cycles causes the

row weight to be more variable.

The more parity checks per bit there are in H, the more

calculations that are required to perform an iteration of the

sum-product decoding algorithm. The effect this has on

decoding complexity at various signal-to-noise ratios

(SNR) is also shown in this section. The average number

of multiplication floating point operations (flops) required

to decode a codeword can be calculated by estimating the

number of flops for one iteration of the sum-product algo-

rithm as 6ng [4] and counting the number of iterations

required to decode each codeword. There are other mea-

surements of decoding complexity such as Reference

[18] which include operations other than multiplication.

Our values are only an estimation, used solely to give a

comparison between the decoding complexity of LDPC

codes with different column weights.

4.1. The decoding performance of oval codes

Figure 2 shows the performance of the oval [63; 44; 5]
code compared to that of a randomly generated length

63 rate-0.7 LDPC code in an AWGN channel. The oval

code is (4;9)-regular and the randomly generated LDPC

code has a column weights of 3 and row weights between

of 9 and 10. Also shown in an STS LDPC code from a 2-

(21; 3; 1) design. The STS LDPC code is the same rate as

the oval code but is (3;10)-regular and slightly longer. The

Table 2. Parameters of some S-oval codes from the oval
designs in Table 1.

m s H [n, k, d]

4 2 (4;17)-regular [500; 380;� 5]
5 4 (4;33)-regular [4092; 3596;� 5]
5 2 (8;33)-regular [2046; 1550;� 9]
6 8 (4;65)-regular [32760; 30744;� 5]
6 4 (8;65)-regular [16380; 14364;� 9]
6 2 (16;65)-regular [8190; 6174;� 17]
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better performance of the oval code despite its shorter

length is attributed to the many extra parity-check equa-

tions in the oval code caused by the low rank of the oval

incidence matrix.

Figure 3 shows the performance of the oval [255; 190; 9]
code compared to that of a randomly generated LDPC code

in the AWGN channel. The oval code is a (8;17)-regular
code and the randomly generated LDPC code has column

weight 3 and row weights between 7 and 18. The oval code

has a higher column weight than the random code and so

has a higher decoding complexity per iteration. However,

in some cases the faster convergence of the oval code gives

the two codes a similar decoding complexity overall.

Figure 4 shows the decoding performance over an

AWGN channel of the oval [1023; 812; 17] code compared

with a randomly generated LDPC code. Also shown is the

[1023;781;33] EG code [11, 12]. The oval code is (16,33)-

regular, the EG code is (32;32)-regular and the randomly

generated LDPC codes have a column weight of 3 and

row weights between 11 and 19. Again, the number of

Figure 2. The decoding performance of the length 63 oval LDPC code in an AWGN channel using sum-product decoding with a
maximum of 50 iterations. (a) Simulated error correction performance; (b) Average number of floating point multiply operations to
decode a codeword.

Figure 3. The decoding performance of the length 255 oval LDPC code in an AWGN channel using sum-product decoding with a
maximum of 50 iterations. (a) Simulated error correction performance; (b) Average number of floating point multiply operations to
decode a codeword.
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parity checks in H has a significant effect on decoding

complexity as shown in Figure 4b. Like the EG code, the

oval code outperforms the equivalent length and rate ran-

domly constructed code only at the higher SNR.

For even longer oval codes, this trend continues and the

performance of the oval codes relative to the standard ran-

dom codes grows significantly worse at low SNR due to

the increasing density of their parity-check matrices. The

longer oval codes have significantly better minimum dis-

tances than are possible with a randomly constructed codes

and so their disappointing performance is direct evidence

of the limitations of comparing LDPC codes by minimum

distance alone. The increase in column weight which pro-

vides this minimum distance gain also serves to greatly

increase the density of H causing the poorer decoding per-

formances. Only at very high SNR do the long oval codes

outperform randomly constructed codes.

4.2. The decoding performance of R-oval codes

A (8;14)-regular rate-0.7 code R-oval [210; 145; 9]

has been designed by taking 14 of the resolution classes

of the 2-(120, 8, 1) oval. Figure 5 shows the decoding

Figure 4. The decoding performance of the length 1023 oval LDPC code in an AWGN channel using sum-product decoding with a
maximum of 1000 iterations. (a) Simulated error correction performance; (b) Average number of floating point multiply operations to
decode a codeword.

Figure 5. The decoding performance of rate 0.7 LDPC codes in an AWGN channel using sum-product decoding with a maximum of
200 iterations. (a) Simulated error correction performance; (b) Average number of floating point multiply operations to decode a
codeword.
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performance of this code in an AWGN channel compared

to a randomly generated LDPC code with the same rate

and codeword length. Also shown is the length 255 EG

code which also has the rate 0.7 compared to a randomly

generated LDPC code with the same rate and codeword

length. The EG code performs better than the R-oval code

but the performance gain is only slightly more than would

be expected due to its longer length.

Removing the columns of the oval design does not

change its density or minimum distance or reduce the

number of linearly dependent parity-check constraints

and so we will see the same trend in performance for the

R-oval codes as for the codes from the whole oval design.

That is, improved error correction performance at all SNR,

compared to the random LDPC codes, for short codes and

worse error correction performances at low SNR, com-

pared to random LDPC codes, as the code length and

hence column weight is increased.

4.3. The decoding performance of S-oval codes

Figure 6 shows the performance of two LDPC codes con-

structed using column splitting, one regular and one irregu-

lar. Both have been constructed by randomly splitting each

of the columns of the 2-(496; 1023; 33; 16) oval incidence
matrix into four. Both the regular and irregular codes from

the oval design have the same row weight, 33, and the same

average column weight, 4, however by considering an

irregular code, with column weights between 3 and 5, there

is a small performance gain achieved.

5. CONCLUSIONS

In this paper, low-density parity-check codes based

on combinatorial structures known as oval designs

have been presented. Oval designs provide a deterministic

construction for regular LDPC codes whose Tanner graphs

are free of 4-cycles. Furthermore, codes with a significant

portion of linearly dependent rows in their parity-check

matrices are produced. Simulation results with the iterative

sum-product decoding algorithm demonstrate that the

LDPC codes from oval designs provide a good tradeoff

between error correction performance and decoding com-

plexity when compared to existing algebraic and randomly

constructed LDPC codes.

The number of blocks in an oval design increases with

the square of the number of points and so the rate of the

oval-LDPC codes increases with their length. However,

lower rate LDPC codes are obtained by using only a subset

of the resolution classes of the oval designs to construct R-

oval codes with properties similar to the oval codes but

with a large range of rates.

The oval and R-oval LDPC codes seem particularly pro-

mising codes with sparse matrices, good minimum dis-

tances and many linearly dependent rows in their parity-

check matrices. For short lengths, codes from oval designs

significantly outperform the randomly constructed codes

on an AWGN channel when decoded with the sum-product

algorithm. The linearly dependent rows in the incidence

matrices of the oval designs improve the performance of

the shorter oval and R-oval codes at all SNR.

Figure 6. The decoding performance of length 4092, rate 0.88, LDPC codes in an AWGN channel using sum-product decoding with
a maximum of 10 iterations. (a) Simulated error correction performance; (b) Average number of floating point multiply operations to
decode a codeword.
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For the longer oval and R-oval LDPC codes, the large

column weight negatively affects code performance due

to the increased density of the parity-check matrix. For

these codes, a decoding performance improvement over

randomly constructed LDPC codes is only achieved at

very high SNR. However, by using column splitting, new

codes called S-oval codes are produced with low column

weights, no 4-cycles and decoding performances similar

to randomly constructed codes. By using column splitting,

very high rate LDPC codes which are free of 4-cycles can

be produced, a task that is difficult with traditional random

code constructions.
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APPENDIX

Construction of oval designs

For completeness, we present here an overview of the con-

struction of oval designs from ovals on projective planes so

that the LDPC codes presented in this paper can be readily

constructed by the reader. Oval designs and projective

planes are well known; further details can be found in

References [13, 19]. Our treatment of projective planes

follows Anderson [19], while the material on oval designs

is essentially Bose and Shrikhande’s original presentation

[20], using the terminology of Assmus and Key [13, 21].

A 2-ðq2 þ qþ 1; qþ 1; 1Þ design, for some integer

q � 2, is called a finite projective plane of order q. Con-

sider the set S of triples x ¼ ðx; y; zÞ of elements of the

finite field GF(q), where ðx; y; zÞ are not all zero. S has

q3 � 1 members, but we identify triples x and y if

x ¼ ly for some non-zero element l 2 GFðqÞ, and say that
x and y are equivalent. Denote the equivalence class of x

by [x]. Each equivalence class has q� 1 members, corre-

sponding to the q� 1 possible non-zero values of l, and so

there are ðq3 � 1Þ=ðq� 1Þ ¼ q2 þ qþ 1 different classes

[x] which we take as the points of PG(2, q).

Next, define the blocks (or lines) as follows: If

a ¼ ða0; a1; a2Þ is a triple of elements of GFðqÞ, not all
zero, define the line [a] to be the set of all points such that

a0xþ a1yþ a2z ¼ 0. By an argument similar to the one

for points, there are q2 þ qþ 1 blocks. To see that there

are qþ 1 points on each line, consider the line [a] where

a ¼ ða0; a1; a2Þ. Not all the ai are zero, so suppose for

example that a1 6¼ 0. Then, if [x] is on [a], x1 is uniquely

determined by x0 and x2, where x0 and x2 cannot both be

zero. There are q2 � 1 choices of x0 and x2, so there are

q2 � 1 vectors x 6¼ 0 satisfying a0xþ a1yþ a2z ¼ 0, and

hence there are ðq2 � 1Þ=ðq� 1Þ ¼ qþ 1 distinct points

[x] on [a].

As an example, we construct the finite projective plane

PGð2; 22Þ, which is a 2-(21; 5; 1) design. Here we use

GFð22Þ, which can be thought of as f0; 1; a; aþ 1g,
where a2 ¼ aþ 1. Writing b in place of aþ 1, so that

ab ¼ aðaþ 1Þ ¼ a2 þ a ¼ 1 and b2 ¼ ðaþ 1Þ2 ¼ a2 þ
1 ¼ a, and omitting brackets and commas, the 21 points

can be written as

100; 010; 001; 1aa; 1b0; 01b; 1a1; 101; 10a; 1ba; 1b1;

10b; 11a; 1bb; 110; 011; 1a0; 01a; 1ab; 11b; 111

Note that there are 21 points, and not 43 � 1 ¼ 63, since

we identify points that differ only by a scalar multiple.

Thus, for example, 01b and 0a1 define the same point

since að0; 1; bÞ ¼ ð0; a; 1Þ.
There are 21 lines in PGð2; 22Þ, a representative selec-

tion being as follows:

½100� : 010 001 01b 011 01a

½1ab� : 1b0 01b 10a 1ab 111

In the above, the five points identified as lying on the line

½1ab� are, by definition, those points ðx; y; zÞ which satisfy
the equation xþ ayþ bz ¼ 0.

An oval in a projective plane of even order q is a set of

qþ 2 points that meet each line of the plane in 0 or 2

points; ovals of qþ 2 points are often called hyperovals

in the literature. To construct such a set of points, consider

the projective plane PGð2; 2mÞ, and take a non-degenerate

conic C on this plane, for example, the conic

xz ¼ y2:

There are sþ 1 points P1; P2; . . . ;Psþ1 on this conic,

where s ¼ 2m. Through any point Pi ¼ ðx0; y0; z0Þ on the

conic, there pass sþ 1 lines, S of which meet the conic

in the other s points on the conic, and the remaining line

z0xþ x0z ¼ 0 meets the conic in the single point Pi, and

is therefore tangent to C. The sþ 1 tangents to the conic

all pass through the point P0 ¼ ð0; 1; 0Þ which is called

the nucleus (also pole or knot) of the conic. The

s2 þ sþ 1 lines of the plane may be divided into three

classes:
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(a) the sðsþ 1Þ=2 secants, each of which meets the conic

in 2 points, neither of which is P0;

(b) the sþ 1 tangents, each of which meets the conic in

one point and passes through P0; and

(c) the sðs� 1Þ=2 exterior lines which do not meet the

conic and hence do not pass through P0.

A regular oval O in the projective plane PGð2; 2mÞ is

now formed by taking the sþ 1 points P1; P2; . . . ;Psþ1

on the conic, together with the nucleus P0. The s2 � 1

points of the plane other than P0 and the points of the conic

are called retained points.

Oval designs can now be defined: let � be a projective

plane of even order q and let O be an oval of �. The oval

design Wð�; OÞ is the incidence structure having for

points the lines of � exterior to O, and for blocks the

points of � not on the oval O, namely the retained points.

Incidence is given by the incidence in � that is, in an oval

design, a point is considered to belong to a block if the cor-

responding line and point in PGð2; 2mÞ are incident. It is

easy to show that oval designs are Steiner systems with

parameters 2� ðqðq� 1Þ=2; q=2; 1Þ; see Reference [13,

Chapter 8]. Oval designs are resolvable with a distinct

resolution defined by each point p on O: the s� 1 blocks

corresponding to the retained points on a secant or tangent

through p form a single parallel class and the full set of

sþ 1 parallel classes forms the resolution [21]. The family

of oval designs constructed in this way have the following

parameters:

� ¼ sðs� 1Þ
2

; b ¼ s2 � 1; � ¼ sþ 1; g ¼ s

2
;

l ¼ 1;

where s ¼ 2m.

To complete the example above, we take the conic

xz ¼ y2 defined on points ðx; y; zÞ of the projective plane

PGð2; 22Þ. There are sþ 1 ¼ 5 points P1; P2; . . . ;P5 on

this conic:

100; 001; 1ab; 1ba; 111

and these points, together with the nucleus P0 ¼ 010, form

an oval O. The s2 þ sþ 1 ¼ 21 lines of the plane are

divided into three classes:

(a) the sðsþ 1Þ=2 ¼ 10 secants:

½01a�; ½010�; ½1ab�; ½111�; ½1b0�;
½01b�; ½1ba�; ½110�; ½011�; ½1a0�

(b) the sþ 1 ¼ 5 tangents:

½100�; ½10b�; ½001�; ½101�; ½10a�

(c) the sðs� 1Þ=2 ¼ 6 exterior lines:

½11a�; ½1bb�; ½1aa�; ½1a1�; ½11b�; ½1b1�:

Choosing point P ¼ 100 on O leads to a resolvable oval

design as follows: sþ 1 ¼ 5 members of the set of secants

and tangents listed above intersect point P and each such

line contains s� 1 ¼ 3 retained points. The set of secant/

tangent lines and their corresponding retained points are

shown in Table 1A.

We now take as points of the oval design the 6 exterior

lines and as blocks the set of s2 þ sþ 1� ðsþ 2Þ ¼
ðsþ 1Þðs� 1Þ ¼ 15 retained points, taken from Table

1A in the natural (left-to-right, top-to-bottom) order. Each

row of Table 1A therefore constitutes a resolution class of

the design, and we obtain the incidence matrix of the 2-(6;
2; 1) oval design given in Figure 1.

The first column, for example, reflects that the retained

point 01b is incident with the two lines ½11a�; ½1b1� exter-
ior to the oval.
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